

Nuclear Physics Institute of the ASCR public research institution

Center of Accelerators and Nuclear Analytical Methods (CANAM)

Neutron production from the ⁷Li(p,n)⁷Be reaction

Mitja Majerle

2/4/2019

Main region of interest is/was below 20 MeV

- Nuclear reactor spectrum decreasing exp with energy, max. ~2 MeV
- Several sources of monoenergetic and continuous neutron spectra
- No monoenergetic neutrons above 20 MeV
 - Eg. accelerator driven systems
 - Continuous neutron spectra (spallation, p/d+thick targets)
 - Quasi-monoenergetic spectra (p+Li, p+Be, thin targets) how well do we know them really?

Experimental neutron CS

ENDF Request 1045, 2017-Nov-22,10:34:30

Tm-169(n,3n)Tm-167 cross-section

Region above 20 MeV is experimentally not well covered.

iThemba neutron station

Quasi-monoenergetic neutrons

- p+Li, p+Be
- Monoenergetic neutron peaks from direct reaction + continuum
- Reactions p+Li:
 - ⁷Li(p,n)⁷Be (+excited states: 0.429, 4.57, 6.73..)
 - ⁷Li(p,2n), ⁷Li(p,nα),
 ⁷Li(p,p'n)...

MCNPX+LA150H simulation

How well do we know QM spectra?

p+Be

- 7 publications: Kamada, Uwamino, Watson, Jungerman, Sisterson, Kim, Novak
- Forward directed neutrons by TOF
- Energy range 20-70 MeV
- Kamada measured at 7 angles (up to 110°)

Jungerman, p+Be (thin), 39.2 MeV, TOF at 0°

Library implementation

How well do we know QM spectra?

- **p+Li** good systematics
 - 20+ publications
 - Energy range: 20-800 MeV
 - Angular distributions: 20-50 MeV, >80 MeV
- But when we want to measure the crosssections:
 - Peak neutrons (can be determined experimentally? ⁷Be activity+Uwamino angular integration formula ?)
 - Continuum (can we use statistical model for A=7? Optical potential)
- Experimental example (cross-sections)

2/4/2019

Reakcia p(40)-Li(C) 1E + 09MeV⁻¹) 1E + 09Reakcia p(20)-Li(C 8E + 086E + 08 sr^{-1} Spektrálny (neut. 4E + 082E + 080E+0010 2030 4050Energia neutrónov (MeV)

1E + 09

výťažok neutrónc

MCNPX+LA150H

Peak neutrons

- ⁷Li(p,n)⁷Be(g.s.+0.429MeV) = peak neutrons in 4π, other reactions contribute to continuum ⁷Li(p,2n)⁶Be, ⁷Li(p,p'n)⁶Li, ⁷Li(p,nα)³He...
- ⁷Be can be measured by gamma spectroscopy, absolute accuracy ±2% - Schery 70'
- Peak neutrons in 4π vs. forward directed peak neutrons Uwamino angular integration 90'

⁷Be activity data from ⁷Li(p,n)

- Reliable data
- Slight disagreement Rez/Schery ~ 8%
- New measurements planned (p+⁷Li CS)
- Problems with ⁷Li providers (available again <u>http://www.nccp.ru/en/prod</u> <u>ucts/lithium-7</u>!!)

Forward directed neutrons formula

Y. Uwamino et al. / Nucl. Instr. and Meth. in Phys. Res. A 389 (1997) 463-473

All angular distributions above the proton beam energy of 80 MeV, can be described with one curve. Below this energy Uwamino used these data:

Y. Uwamino et al. / Nucl. Instr. and Meth. in Phys. Res. A 389 (1997) 463-473

'Fast Neutrons for the next Decade and Beyond' Workshop

2/4/2019

Forward directed neutrons formula

Y. Uwamino et al. / Nucl. Instr. and Meth. in Phys. Res. A 389 (1997) 463-473

With the integration of the angular distributions Uwamino obtained the ratio of forward directed neutrons and fitted it. Range: 20-40 MeV Accuracy: ±6%

2/4/2019

Forward directed neutrons formula

EXFOR now has more angular data:

Calculated ratio of forward directed neutrons

Good agreement with Uwamino formula.

2/4/2019

'Fast Neutrons for the next Decade and Beyond' Workshop

Forward directed neutrons formula

- NPI irradiations 2013present (with Li target)
- We measured:
 - ⁷Be activity in the lithium target
 - Number of forward directed neutrons measured with NE213 in the TOF mode (~4m)
 - Ratios compared with formula

Good agreement with Uwamino. 32.5 MeV ?

Library implementation

Neutrons at 0° in 2mm 7Li foil, libs vs exp.

Forward directed peak neutrons

Summary:

- In range 20-40 MeV, ⁷Be activity, Uwamino formula, ±5% accuracy of absolute number of peak neutrons
- No data between 50-80 MeV, but Uwamino formula should work
- Above 80 MeV, angular data, Watson/Tadeucci systematics
- Reliable cross-sections if ⁷Be measurement is impossible
- Do not rely on libraries, always normalize!
- Possible traps:
 - Carbon beam stopper (below 40 MeV) absorption of neutrons (1cm 10-15%)
 - Scattering of neutrons in narrow places (TSL Uppsala)

TSL Uppsala

- Protons 38-100 MeV
- ⁷Li target (4mm, 25 mm)
- Magnetic deflection of the proton beam
- Similar to iThemba
- FLUKA simulations (⁷Li(p,n) reaction in source.f code)

TSL Uppsala

Protons go to the beam dump

Neutrons are scattered by Fe to the sample position

TSL Uppsala

- BLUE simulation with the magnet yoke, lead collimators
- RED simulation without anything
- Considerable contribution of scattered peak neutrons: 19-23% (depends on the energy used)
- Contribution also to the continuum...

Continuum - simulated neutron spectra

Simulated neutron spectra for NPI irradiations. Proton energies 20-35 MeV are used.

Peak neutrons normalized to the same number=experimental data from ⁷Be+Uwamino.

2/4/2019

Continuum

LA150H, Mashnik:

GNASH – preeq, HF,
 optical model from ⁶Li

JENDL4.0/HE, Kunieda:

 No separate publication, personal contact.

Continuum – TOF frame overlap

Frame overlap: Fastest neutrons from the next bunch catch up with the slowest ones. Special cyclotron (iThemba) is necessary to measure below 5 MeV !

Irradiation (20-35 MeV), measurement

Samples are measured after ca 20 sec. with HPGe

Sample location, repeated irradiation for 5 min

ND2016

Cross-section unfolding – C/E

Reaction rates are cross-sections folded/multiplied with neutron spectra.

ND2016

Cross-section unfolding – SAND-II

- Iterative procedure:
- CS is modified until measured reaction rates correspond to CS folded with neutron spectra
- Spikes between monoenergetic reagions – small contribution
- Monoenergetic regions are averaged to obtain extracted experimental cross-section

Continuum - simulated neutron spectra

Simulated neutron spectra for NPI irradiations. Proton energies 20-35 MeV are used.

Peak neutrons normalized to the same number=experimental data from ⁷Be+Uwamino.

2/4/2019

Cross-section unfolding – uncertainty

- Sensitivity analysis:
 - Input is sampled according to its uncertainty
 - Iterative procedure is performed with each set of input parameters
 - Sigma of the output is taken

- We know QM spectra from p+Li relatively well
 - ⁷Be activity + Uwamino formula can be used
 - More experimental data on ⁷Be cross-section and angular data in the range 40-80 MeV would be nice (ratio forward/ 4π also useful)
- LA150H and JENDL4.0/HE libraries
 - Normalize peak areas! Angular distributions of peak neutrons in both libs are not well described and you will get wrong numbers even if correct ⁷Be cross-sections were used
- Uncertainty of extracted cross-sections (5% peak neutrons, sensitivity analysis for continuum – 10%, not negligible!)
- p+Be spectra are not so well studied, a lot of work can be done

Thank you !

