Nuclear data measurements at white and quasimonoenergetic sources of high-energy neutrons: The example ²³⁵U(n,f) / ¹H(n,n)p.

<u>R. Nolte</u>, n_TOF collaboration, TLABS neutron beam collaboration

PTB Department 6.4 'Neutron Radiation'

Overview

Measurement of ²³⁵U fission cross section rel. to np scattering: ²³⁵U(n,f) / ¹H(n,n)p

- Continuous ('white') neutron source:
- Quasi-monoenergetic neutron source:
- n_TOF iThemba LABS

²³⁵U(n,f): Experimental Data for $E_n > 20$ MeV

 ²³⁵U(n,f): most important secondary standard for neutron flux measurements above 20 MeV

Prof. Dr. Ernst Otto Göbel Physikalisch-Technische Bundesanstalt Präsidiale Stabsstelle Bundesallee 100 38116 Braunschweig Germany

Dear Professor Göbel,

The Nuclear Data Section of the International Atomic Energy Agency has finalized work on the Coordinated Research Project (CRP) "International Evaluation of Neutron Cross Section Standards". These standards are essential for subsequent measurements and evaluations of other neutron cross sections for nuclei included in international and national nuclear data libraries. Standards for ²¹⁵U(n,f) and ²¹⁸U(n,f) cover the energy range from thermal to 200 MeV. Unfortunately, there are not many measurements in the high-energy region (above 20 MeV), and most are not absolute measurements. Thus, the absolute cross section measurements made by Dr. Nolte in 2004 (Nucl. Sci. Eng., **156**, 197 (2007)) were a very valuable contribution to the standard work within the CRP.

AEA

In reply please refer to:

2007-10-29

الوكانة الدولية للطاقة الذرية 国际原子他机构 International Atomic Energy Agency

Agence internationale de l'énergie atomique Международное агентство по атомной энерги Organismo Internacional de Energia Atómica

Wagramer Strasse 5, PO Box 100, 1400 Wien, Austria

Email: Official.Mail@iaea.org + Internet: http://www.iaea.org

Phone: (+43 1) 2600 + Fax: (+43 1) 26007

Dial directly to extension: (+431) 2600-

Atoms for Peace

We understand that the accuracy reached in these measurements can be improved further (currently between 5 - 10%), and there is no physical limitations as to the choice of the energies studied. We would be very interested in such a measurement programme, especially in the energy range from 50 to 60 MeV, where some experimental data and model calculations exhibit significant irregulations in the cross-section behaviour. Data points for absolute cross sections with a uncertainty of 5% in the energy range from 60 to 150 MeV will assist considerably with resolution of the existing discrepancy between two sets of shape cross section measurements carried out independently at Los Alamos National Laboratory, USA and V. G. Khlopin Radium Institute, Russia.

Yours sincerely,

Undut

- Only one 'complete' dataset relative to Lisowski/LANL (1991)
- Some additional scattered data with larger uncertainties

- Main feature of n_TOF is the extremely high instantaneous neutron flux (10⁵ n/cm²/pulse)
- Unique facility for measurements of radioactive isotopes (maximize S/N)
 - Branch point isotopes (astrophysics)
 - Actinides (nuclear technology)

- Other features of the neutron beam:
 - High resolution in energy ($\Delta E/E=10^{-4}$) \rightarrow study resonances
 - Large energy range (25 meV< E_n <1 GeV) \rightarrow measure fission up to 1 GeV
 - Low repetition rate (<0.8 Hz) \rightarrow no wrap-around

Experimental Challenges at n_TOF

Requirements:

- Fast detectors
- Fast, EMI-proof frontend electronics
- High efficiency and/or high granularity
- Many DAQ-channels

n_TOF source:

- high instantaneous flux
- low average flux
- intense γ-flash

The ²³⁵U(n,f)/¹H(n,n)p Experiment

Simultaneous detection of recoil protons and fission fragments:

- Experiment at EAR1: high neutron energies, good time resolution
- Capture collimator: small kinematical energy spread, red. neutron flux
- Challenge: intense γ flash
- Detection efficiencies do not cancel!

$$\frac{\sigma_{235}}{(\mathrm{d}\sigma_{\mathrm{np}}/\mathrm{d}\Omega)} = \frac{n_{\mathrm{H}}\varepsilon_{\mathrm{p}}\Omega_{\mathrm{geo}}N_{\mathrm{FF}}}{n_{\mathrm{U}}\varepsilon_{\mathrm{FF}}N_{\mathrm{p}}}$$

ALMA MATER STUDIORUM 7 UNIVERSITÀ DI BOLOGNA

Triple-Stage RPT

Several $\Delta E_1 - \Delta E_2 - E$ RPT configurations:

- solid angle defined by ΔE_2
- 1, 2, 5 mm *∆E* scintillators (EJ204)
- 50, 100 mm *E* scintillators (EJ204)
- \Rightarrow low Z: reduced sensitivity to γ flash!

Particle separation: 1 mm - 1 mm - 50 mm EJ204

¹²C(n,x) background subtracted in sim. and exp. data using matched graphite samples

proton escape!

Detection of Fission Fragments

• PPAC:

low pressure: not sensitive to γ -flash FF detection efficiency $\mathcal{E}_{FF} \approx 60\%$ good identification of fission events

• PPFC:

ambient pressure: sensitive to γ -flash no gain: sensitive to EM interference calculable efficiency: $\varepsilon_{FF} \approx 94\% - 97\%$

\Rightarrow Strategy:

- use PPFC at 'lower' neutron energies
- calibrate PPAC for higher energies

Fission Chamber: Waveforms

II-2 #123

- - U-2 #180

- Weak γ flash!
- EM interference: 'ringing'!
- Waveforms from blank and U samples are different
- Proper pulse shape analysis: tbd!

Fission Chamber: Amplitude - TOF

- Parasitic and dedicated pulses
- 5.02×10¹⁷ protons
- Charge-sensitive
 PreAmps + Fast Filter

Fission Chamber: Amplitude Distributions

- Reference distribution $\langle E_n \rangle$ = 25.4 meV: Zero bias correction $k_0 \approx 1.05$
- FC works at intermediate energies:
 *E*_n ≤ 150 MeV
- PPAC required for higher energies

Preliminary Reconstructed Flux

- Still considerable scatter in the RPT data
- Systematic difference between RPT and FC: 15 %
- ⇒ Cross check using quasi-mon. neutrons at TLABS!

R. Nolte

Final Experiment 2018

Big collimator

¹⁶O(n,α) 2.0E¹⁸

43

42

Final run 2018:

n TOF Schedule 2018 ver. 1.0

235U(n,f) 4.0E18

- 35 days
- 3.4.10¹⁸ protons

PTB detectors:

Energy range: 30 MeV – 130 MeV

¹²C(n,p) 2.0E¹⁸

- 8 ²³⁵U layers, m_{tot} = 2.4 mg/cm² FC:
- RPT: 0.5 mm – 0.5 mm – 50 mm EJ204
 - 1 mm 1 mm 50 mm
 - 2 mm 2 mm 100 mm

PE-Samples:

1 mm, 2 mm, 5 mm

Analysis in progress!

- E. Pirovano, Q. Ducasse (PTB)
- A. Manna (INFN / U Bologna)

Compare white and qmn beams for finite energy groups: $\Delta E_n/E_n = 0.05$

- n_TOF:
 - *d* = 182 m (EAR1)
 - Capture collimator
 - 9.10¹⁶ protons per day
- iThemba LABS QMN Facility:
 - *d* = 5.5 m
 - Collimator: ^Ø18 mm
 - − Li target thickness: $\Delta E_n/E_n \le 0.05$
 - no pulse selection

iThemba LABS:

- higher brilliance
- quasi-DC beam: rep. rate = 11 26 MHz
- ⇒ well suited for cross checking n_TOF measurements !

RPT Design Exercise at iThemba LABS

Test of a recoil proton telescopes in 2013:

- Neutron Source: ^{nat}Li (8 mm) + p (75 MeV):
- Collimated beam (50 × 50 mm²)
- Two RPT designs

RPT Design Exercise: Results

- Good particle discrimination with 500 µm Si-PIPS
- Less neutron-induced coupling with $\Delta E_1 \Delta E_2 E RPT$

²³⁵U(n,f)/¹H(n,n)p Benchmark Experiment for TLABS

Direct comparison: fission chambers - recoil telescopes:

- **Reference: H19 (PTB ref. instrument)** ٠
- $E_{\rm n} = 30 \text{ MeV}, 60 \text{ MeV}, 150 \text{ MeV}$
- Optimized collimation: ^Ø18 mm @ 4 m
- no pulse selection

1-2% can be achieved!

	RPT	PPFC	
E n	(d <i>N</i> _p /dt)	<i>m</i> υ	(d <i>N</i> _f /dt)
MeV	h ⁻¹	mg/cm ²	h ⁻¹
30	396	2.32	367
40	500	2.32	524
60	1064	2.32	972
100	2640	2.32	2112
150	1395	2.32	2838
200	1597	2.32	3131

Summary

- First fission cross section measurement at n_TOF relative to the n-p scattering cross section
- Two fission and recoil proton detectors.
- Useful data at least up to 150 MeV (600 ns after γ-flash) for all detectors
- An experiment with qmn neutrons at TLABS would be a very useful cross check of the RPT efficiencies!
- This would also provide the metrological infrastructure for the upgraded TLABS facility

Thank you for your attention!

