

Neutron Metrology at the National Physical Laboratory

iThemba Labs 4th February 2019

Alberto Boso

Collaboration for the Development of the Fast Neutron Metrology Facility at iThemba LABS

The National Physical Laboratory

- UK's National Metrology
 Institute/ Public Corporation
- Formal Partnership between NPL, BEIS and Universities of Surrey and Strathclyde
- ~800+ staff with ~200 visiting researchers/year
- Partner with 200+ organisations and 80+ Universities

Chemical, Medical &	Engineering, Materials &	Quantum	Data
Environmental Metrology	Electrical Metrology	Metrology	Metrology
 Biometrology Earth Observation Medical Radiation Physics Emissions & Atmospherics Gas & Particle Medical Radiation Science Mass Spec Imaging Nuclear Radiochemistry Surface Technology Ultrasound & Underwater 	 Electrochemistry EM Measurements EM Technologies Electronics Magnetics Engineering Services Manufacturing Mass Material Characterisation Materials Testing Temperature & Humidity 	 Quantum Time & Frequency 	• Data

The NPL Neutron Metrology Section operates world-leading facilities for measuring **neutron source emission rates** and providing an extensive range of accelerator- and source-based **calibration fields**

9 staff members

- David Thomas (PRS)
- Nigel Hawkes (PRS)
- Graeme Taylor (PRS)
- Neil Roberts (SRS)
- Michael Bunce (SRS)
- Andy Bennett (SRS)
- Alberto Boso (HRS)
- Sarb Cheema (RS)
- Nicola Horwood (RS)
- Vacancy x 2 (RS)
- Paddy Regan (PRS) SAL

Manganese Bath – Primary Standard

- Manganese Sulphate soln.
- ${}^{55}Mn(n,\gamma){}^{56}Mn \rightarrow 2.6hr$

Source	Total output (s ⁻¹)	
²⁵² Cf	2.6 x 10 ³ - 6.8 x 10 ⁷	
²⁴¹ Am-Be	7.9 x 10 ⁴ - 3.2 x 10 ⁷	
²⁴¹ Am-B	4.3 x 10 ⁵	
²⁴¹ Am-F	1.3 x 10 ⁵	
²⁴¹ Am-Li	2.1 x 10 ⁵	

3.5 MV Van de Graaff accelerator.

Protons and deuterons to energies 880 keV - 3.5 MeV.

Neutron irradiation capabilities

iThemba – 4th February 2019

Neutron Fluence

- Measured using a Long Counter (BF₃ counter inside a cylindrical moderator).
- The efficiency, about 11 counts per (neutron per cm²), varies relatively little with energy.
- Efficiency established by (e.g.) using neutron sources with accurately known output (measured in NPL Mn bath).
- Provides a calibration of the beam current monitor.

Thermal Pile

	Beam Current (μΑ)	Central access hole	Thermal column
Field geometry		Isotropic	Collimated beam
Max fluence rate (cm ⁻² s ⁻¹)	80	1.2 x 10 ⁷	4.0 x 10 ⁴

Graphite block: 2.8 m x 1.4 m 1.6 m tall

Neutron Facility

- The accelerator is over 50 years old and becoming unreliable
- Many of the component parts are obsolete and irreplaceable
- The machine is kept going by the knowledge and experience of a very small team 2 people!

Therefore, we need a new machine!

Solution

• Stakeholder engagement \rightarrow Optimal solution

2MV TVdG

- \uparrow I_{beam}= \uparrow fluence
- Energy range ↑

T-shaped design Current max = 200 μA

↑ Reliable = ↑ uptime

Pulsed

Coaxial design High Current > 1 mA

Benefits for neutron production

Benefits for neutron production

Benefits for neutron production

Thermal Pile - Benefits

	Beam Current (µA)	Central access hole	Thermal column
Field geometry		Isotropic	Collimated beam
Max fluence rate (cm ⁻² s ⁻¹)	80	1.2 x 10 ⁷	4.0 x 10 ⁴
	1000	1.5 x 10 ⁸	5 x 10 ⁵

- Substantial work required to redesign targets to withstand extra beam power
- Higher energy + thick target = higher yield
- Redesign could yield even higher yields, reflector material/more shielding?

- Nuclear Metrology is working in the growth area of radiopharmaceutical standardisation → looking to expand
- Seize this opportunity to explore the options of co-locating another accelerator
- This would accelerate the <u>already planned</u> expansion into this work

Other areas: Radiation biology, nuclear structure

Proposed Layout

iThemba – 4th February 2019

Possible new research themes

- Neutron cross section measurements/Nuclear Data
- Neutron hardness
- Neutron Activation Analysis
- Neutron imaging
- Radiation Biology
- Production of novel medical isotopes
- Academic access Nuclear Astrophysics or Structure
- Accelerator component development
- Teaching and Education PhD/MSc projects

Neutron

work

Neutron Spectrometry

Broad range, thermal to GeV, but poor resolution – Bonner Spheres – based on moderation

- Active system ³He proportional counter
- **Passive** system Au activation foils

Extended range BS (high-Z layer) -> higher E range

Limited range, high resolution

- Scintillators: liquid (NE213), CLYC, plastic –
 Fast response, Pulse Shape Discrimination
- Proton Recoil Counters 50 keV to 1.5 MeV
- Diamond detector –
 Well defined peak at neutron energy

Cross section measurements

- Two campaigns under CHANDA (2016 and 2017)
- ²³⁵U(n,f), ²³⁸U(n,f), ²³⁷Np(n,f) and ²⁴²Pu(n,f)
- Monoenergetic neutrons:

 $E_n = 0.565, 0.9, 1.0, 1.1, 1.2, 1.8, 2.0 \text{ and } 2.4 \text{ MeV}$

- Fluence measurement → NPL long counter
- Fission detector → TFGIC
- 2 measurements: absolute and relative

Neutrons in Proton Therapy

There are two kind of secondary neutrons:

External neutrons Produced in the interaction of the protons with the **beam delivery system** Worse in Passive scattering

Internal neutrons Produced inside the patient Impossible to avoid Secondary neutrons are produced by the interaction of the primary protons with the matter Unwanted dose to the patient Secondary cancer risk? Dose to the workers? Implanted Cardiac Devices?

Experimental Challenges

Wide Energy Range

- No survey instrument with good response over the whole range
- We need spectroscopic information!
- Difficult to validate response matrix at very high energy
- Simulations rely on physics models

Beam delivered by cyclotrons, synchrotrons, cyclo-synchrotrons -> Pulsed structure

Pulsed structure

Very high intensity in narrow time window Detectors require time to process every single event -> Dead Time

Proton Therapy in the UK

Good contacts with public centres

- Christie, Manchester. First treatment in 2018.
 NDA in place, measurements out the room soon
- UCLH, London. First treatment in 2020.

Good contacts with private centres

Rutherford, Newport. First treatment in May 2018.
 Preliminary measurements performed
 Collaboration with NPL Dosimetry Group
 New measurements soon

Next Steps

Measurements at Christie, Manchester

- Neutron dose outside the shielding
- Hazard for workers
- Possibly measurements inside the room

EURADOS WG9

- Measurement in Krakow (Sep 18)
- Measurements in CCB cyclotron
- Dosemeters, survey instrument, ERBSS

EURADOS

Measurements at Rutherford, Newport

- Neutron dose in and out of the room
- Collaboration with NPL Dosimetry Group

TECHNICAL DEVELOPMENT

 Development of BSS read out in current mode with POLIMI (accepted EMPIR)

 Validation of BSS response function at high energy with (quasi)monoenergetic beams (iThemba?)

Thank you for listening!

Collaboration for the Development of the Fast Neutron Metrology Facility at iThemba LABS

Who are our customers?

The NPL NMG provides industry, academia, and defence with well characterised monoenergetic neutron fields from 0.001 eV to 19 MeV and high intensity thermal fields.

High Intensity Facility

- Plans for a facility are being developed based on ⁹Be(d,n)¹⁰B reaction
- MCNP6 used to model potential shielding solutions
- Theoretical fluence for radiation hardness testing for electronic devices
 1 MeV-equivalent fluence rate in Si = 1.45x10⁶ neutrons cm⁻² s⁻¹

(3 MeV Ds, 20 uA beam current, d = 1 m)

 Theoretical dose rates for overload testing radiation protection devices H*(10) rate = 1.7 Sv h⁻¹ (3 MeV Ds, 20 uA beam current, d = 1 m)

