### Photo-neutron Reaction Cross Section Measurements on <sup>94</sup>Mo and <sup>90</sup>Zr Relevant to the *p*-Process Nucleosynthesis

### Adriana Banu, E. G. Meekins

Department of Physics and Astronomy, James Madison University

### S. A. Silano, H. J. Karwowski

Triangle Universities Nuclear Laboratory (TUNL), University of North Carolina at Chapel Hill

### S. Goriely

Institut d'Astronomie et d'Astrophysique (IAA), Université Libre de Bruxelles



#### **African Nuclear Physics Conference**

July 1 - 5, 2019 Kruger National Park, South Africa

### Seminal curve of atomic abundances





C. Travaglio et al., ApJ 739, 93 (2011)

#### p-Process Nucleosynthesis:



M. Arnould & S. Goriely, Phys. Rep. 384, 1 (2003)

Essential to improving the accuracy of **stellar reaction rate theoretical predictions** within Hauser-Feshbach statistical models:





Nuclear level density





| γ-ray beam parameters          | Values                |  |
|--------------------------------|-----------------------|--|
| Energy                         | 1 – 100 MeV           |  |
| Linear & circular polarization | > 95%                 |  |
| Intensity with 5% AE /E        | > 10 <sup>7</sup> v/s |  |

For more details see: http://www.tunl.duke.edu/higs/





- $N_n$  number of neutrons detected using <sup>3</sup>He counters
- $N_{\gamma}$  number of incident photons
- $N_t$  number of target atoms per unit area (enriched target)
- $\varepsilon_n$  neutron detection efficiency

# <sup>90</sup>Zr(γ,n)<sup>89</sup>Zr

#### MeV



$$E_{ni} = \left(\frac{89}{90}\right) \left(E_{\gamma} - S_n - E_i\right)$$

- $\varepsilon_{ni}(E_{ni})$  neutron efficiency from Geant4 simulations
- $\boldsymbol{b}_i$  neutron branching from TALYS calculations

$$\epsilon_n^{\rm eff} = \sum_i b_i \epsilon_{n_i} (E_{n_i})$$

γ-ray Beam Energies (MeV): 11.75, 12, 12.1, 12.2, 12.4, 12.5, 12.8, 13, 13.5

# <sup>90</sup>Zr(γ,n)<sup>89</sup>Zr

| $E_{\gamma}$ (MeV) | $E_i$ (MeV) | $J_i^{\pi_i}$ | $E_{n_i}$ (MeV) | $l_i$       | $\epsilon_{n_i}$ (%) | $b_i$ | $\epsilon_n^{\rm eff}$ (%) |
|--------------------|-------------|---------------|-----------------|-------------|----------------------|-------|----------------------------|
| 12                 | 0           | 9/2+          | 0.03            | 3 (f  wave) | 52.89                | 1     | 52.89                      |
| 12.1               | 0           | $9/2^{+}$     | 0.13            | 3 (f  wave) | 52.15                | 1     | 52.15                      |
| 12.2               | 0           | $9/2^{+}$     | 0.23            | 3 (f  wave) | 51.53                | 1     | 51.53                      |
| 12.4               | 0           | $9/2^{+}$     | 0.43            | 3 (f  wave) | 49.21                | 1     | 49.21                      |
| 12.5               | 0           | $9/2^{+}$     | 0.53            | 3(f  wave)  | 47.69                | 1     | 47.69                      |
| 12.8               | 0           | $9/2^{+}$     | 0.82            | 3 (f  wave) | 44.18                | 0.17  | 49.94                      |
|                    | 0.5878      | $1/2^{-}$     | 0.24            | 0 (s wave)  | 51.12                | 0.83  |                            |
| 13                 | 0           | 9/2+          | 1.02            | 3(f  wave)  | 41.33                | 0.23  | 46.94                      |
|                    | 0.5878      | $1/2^{-}$     | 0.44            | 0 (s wave)  | 48.61                | 0.77  |                            |
| 13.5               | 0           | $9/2^{+}$     | 1.51            | 3(f  wave)  | 36.71                | 0.26  | 42.97                      |
|                    | 0.5878      | $1/2^{-}$     | 0.93            | 0 (s wave)  | 42.68                | 0.45  |                            |
|                    | 1.0949      | $3/2^{-}$     | 0.43            | 0 (s wave)  | 49.02                | 0.29  |                            |

<sup>90</sup>Zr(γ,n)<sup>89</sup>Zr

| $E_{\gamma}$ (MeV) | $\sigma_{E_{\gamma}}$ (MeV) | $\sigma_{(\gamma,n)}$ (mb) | $\eta = \frac{\epsilon_{n_0}}{\epsilon_n^{\text{eff}}} = \frac{\sigma_{(\gamma,n)}}{\sigma_{(\gamma,n_0)}}$ |
|--------------------|-----------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------|
| 11.75              | 0.21                        | $0.01 \pm 0.01$            | 1                                                                                                           |
| 12                 | 0.23                        | $0.11 \pm 0.01$            | 1                                                                                                           |
| 12.1               | 0.21                        | $0.14 \pm 0.02$            | 1                                                                                                           |
| 12.2               | 0.22                        | $0.50 \pm 0.03$            | 1                                                                                                           |
| 12.4               | 0.22                        | $2.28 \pm 0.12$            | 1                                                                                                           |
| 12.5               | 0.23                        | $4.42 \pm 0.24$            | 1                                                                                                           |
| 12.8               | 0.23                        | $9.67 \pm 0.52$            | 0.88 1 excited state                                                                                        |
| 13                 | 0.22                        | $12.66 \pm 0.68$           | 0.88 1 excited state                                                                                        |
| 13.5               | 0.24                        | $20.94 \pm 1.13$           | 0.85 2 excited state                                                                                        |





| $E_{\gamma}$ (MeV) | $\sigma_{E_{\gamma}}$ (MeV) | $\sigma_{(\gamma,n)}$ (mb) | $\eta = \frac{\epsilon_{n_0}}{\epsilon_n^{\text{eff}}} = \frac{1}{\sigma}$ | $\frac{\sigma(\gamma,n)}{\sigma(\gamma,n_0)}$ |
|--------------------|-----------------------------|----------------------------|----------------------------------------------------------------------------|-----------------------------------------------|
| 9.5                | 0.18                        | $0.28\pm0.02$              | 1                                                                          | 94                                            |
| 9.6                | 0.17                        | $1.21 \pm 0.07$            | 1                                                                          |                                               |
| 9.65               | 0.17                        | $2.51\pm0.14$              | 1                                                                          |                                               |
| 9.7                | 0.17                        | $2.97\pm0.16$              | 1                                                                          |                                               |
| 9.75               | 0.17                        | $4.50\pm0.24$              | 1                                                                          |                                               |
| 9.8                | 0.17                        | $4.93\pm0.27$              | 1                                                                          |                                               |
| 9.85               | 0.17                        | $6.28 \pm 0.34$            | 1                                                                          |                                               |
| 9.95               | 0.16                        | $7.83 \pm 0.42$            | 1                                                                          |                                               |
| 10                 | 0.19                        | $8.44\pm0.46$              | 1                                                                          |                                               |
| 10.2               | 0.17                        | $10.11\pm0.55$             | 1                                                                          |                                               |
| 10.5               | 0.17                        | $11.77\pm0.63$             | 1                                                                          |                                               |
| 10.8               | 0.17                        | $13.06\pm0.70$             | 0.89                                                                       | 1 excited state                               |
| 11                 | 0.17                        | $14.53\pm0.78$             | 0.86                                                                       | 1 excited state                               |
| 11.5               | 0.24                        | $17.47\pm0.94$             | 0.80                                                                       | 3 excited states                              |
| 11.65              | 0.25                        | $18.73 \pm 1.01$           | 0.78                                                                       | 3 excited states                              |
| 11.8               | 0.22                        | $20.63 \pm 1.11$           | 0.79                                                                       | 3 excited states                              |
| 11.95              | 0.23                        | $22.61 \pm 1.22$           | 0.79                                                                       | 6 excited states                              |
| 12.25              | 0.22                        | $24.20 \pm 1.30$           | 0.71                                                                       | 8 excited states                              |
| 12.5               | 0.23                        | $27.86 \pm 1.50$           | 0.72                                                                       | <b>11</b> excited states                      |
| 12.8               | 0.23                        | $32.39 \pm 1.74$           | 0.74                                                                       | 14 excited states                             |
| 13.5               | 0.24                        | $48.64 \pm 2.62$           | 0.77                                                                       | 22 excited states                             |

# <sup>94</sup>Mo(γ,n)<sup>93</sup>Mo

<sup>94</sup>Mo(γ,n)<sup>93</sup>Mo





### Messages to take away

- Laboratory measurements of photodisintegration cross sections cannot constrain the actual stellar reaction rates!
- > Accurate measurements of cross sections of photoneutron reactions help constrain the E1  $\gamma$ -ray strength function
- Neutrons emitted from excited states in the residual nucleus must be appropriately accounted for when extracting the photoneutron reaction cross sections
- If only neutrons emitted from directly populated ground state in the residual nucleus are considered, the photoneutron reaction cross sections can be overestimated!

14

### Acknowledgments

This research is funded by the Research Corporation for Science Advancement – The Cottrell College Science Award







The theoretical work was performed within the IAEA CRP on "Updating the Photonuclear Data Library and Generating a Reference Database for Photon Strength Functions" (F41032)