

V. W. Ingeberg Inverse-Oslo Method A tool for expanding our understanding of the r-process

Outline

- Motivation
- What is the Oslo Method?
- Why Oslo Method with inverse kinematics
- Results

The neutron-capture process (s-/r-process)

- Responsible for most nuclei heavier than iron¹
- Known to happen in kilonovas following neutron star mergers²
- Abundance calc. needs accurate nuclear input
 - Neutron capture rates
 - Decay rates, masses, etc.
- Alternative to surrogate & nTOF

Figure credit: F. Timmes, http://cococubed.asu.edu/images/nuclide_chart/table_nuclei04.pdf

Neutron capture

γ -ray Strength Function

- Measure of the electromagnetic interaction of a nucleus
- Dominated by the E1 giant resonance (GDR)
- Low energy enhancement "upbend" (LEE)
- Scissors resonance
- Pygmy dipole resonance (PDR)

 γ -ray energy

Effect of LEE on neutron capture

- Origin of LEE still not well
 understood
- The LEE can have a huge impact on (n,γ) cross section
- Experimental data is needed to refine theoretical models

Figure credit: A. C. Larsen and S. Goriely, Phys. Rev. C 82, 014318 (2010)

The Oslo Method

- Simultaneous measurement of
 - $-\gamma$ -ray strength function (γ SF)
 - Nuclear Level Density (NLD)
- Relies on experimental E_{γ} vs E_{x} matrices from the quasi-continuum

Oslo Method – In practice

- 1. Unfold with detector response
- 2. First generation method
- 3. Extract functional form of NLD & $\gamma SF \qquad \tilde{\rho} = A \rho e^{\alpha E_x}$

$$\tilde{\mathcal{T}} = B\mathcal{T}e^{\alpha E_{\gamma}}$$

- Transformation parameters A, B and α has to be determined
- Comparison to nuclear parameters
 - Experimental
 - Systematical

The Oslo Method – In practice

Typical experiments:

- Particle- γ coincidences
 - Light ion beam
 - (p,p'), (d,p), (³He, α), etc.
 - Typical beam energy 12-34 MeV
 - Stable targets

To reach neutron rich:

- β-Oslo
- Inverse kinematics

Oslo Method in inverse kinematics

- Interchange target & beam
- Deuterated plastic targets
- Radioactive beams, noble gases, alkali's, etc.
- Complements traditional Oslo
 Method and β-Oslo
- Doppler shift

Inverse-Oslo experiments

Completed experiments

- d(⁸⁶Kr, p)⁸⁷Kr iThemba LABS
 - April/May 2015
 - Analysis finished
- d(⁸⁴Kr,p)⁸⁵Kr iThemba LABS
 - November/December 2017
 - Analysis on-going
- d(¹³²Xe,p)¹³³Xe iThemba LABS
 - November/December 2017
 - Analysis on-going
- d(⁶⁶Ni,p)⁶⁷Ni CERN ISOLDE
 - November 2016
 - First inverse-Oslo with radioactive beam!
 - Analysis on-going

Proof-of-principle – ⁸⁷Kr

- 300 MeV ⁸⁶Kr beam
- d(⁸⁶Kr,p)⁸⁷Kr
- AFRODITE + 2 LaBr₃:Ce (3.5x8")

⁸⁷Kr – Nuclear level density

UiO **Department of Physics**

University of Oslo

⁸⁷Kr - γ-ray Strength Function

87Kr – (n, γ) cross section

HIE-ISOLDE

- ⁶⁶Ni beam @ 4.5 MeV/u
- ≈11 pA for ~ 140 hours
- 669 µg/cm² C₂D₄ target
- Six Miniball clusters
- Six large volume (3.5x8") LaBr3:Ce detectors
- C-REX particle array
- Look for particle-γ coincidences

Results

6

Summary

- The inverse-Oslo Method
 - An indirect route to determine (n,γ) cross section
 - Allows measurements on nuclei with challenging chemical properties
 - Bridges the gap between traditional Oslo Method and the β -Oslo method

Thank you for listening!

ISOLDE experiment IS559

S. Siem¹, M. Wiedeking², K. J. Abrahams^{2,3}, K. Arnswald⁴, F. L. Bello Garrote¹, T. Berry⁵, D. L. Bleuel⁶, J. Cederkäll^{4,7}, T. L. Christoffersen¹, D. M. Cox⁸, L. Crespo Campo¹, H. De Witte⁹, L. P. Gaffney⁷, A. Görgen¹, C. Henrich¹⁰, A. Illana Sison⁹, P. Jones², B. V. Kheswa^{2,11}, T. Kröll¹⁰, S. N. T. Majola^{2,12}, K. L. Malatji^{2,12}, T. Nogwanya², J. Ojala⁸, J. Pekarinen⁸, G. Rainovski¹³, P. Reiter¹⁴, D. Rosiak¹⁴, M. von Schmid¹⁰, M. Seidlitz¹⁴, B. Siebeck¹⁴, J. Snäll⁴, K. Sowazi², G. M. Tveten¹, N. Warr¹⁴, F. Zeiser¹

¹Department of Physics, University of Oslo, N-0316 Oslo, Norway
 ²iThemba LABS, P.O. Box 722, 7129 Somerset West, South Africa
 ³Department of Physics, University of Western Cape, P/B X17 Bellville 7535, South Africa
 ⁴Physics Department, University of Lund, Box-118, SE-22100, Lund, Sweden
 ⁵Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
 ⁶Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California, 94550-9234, USA
 ⁷ISOLDE, EP Department, CERN, CH-1211 Geneva, Switzerland.
 ⁸ Department of Physics, University of Jyväskylä, P.O. Box 35, FIN-40014 Jyväskylä, Finland
 ⁹Instituut voor Kern- en Stralingsfysica, K.U. Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
 ¹⁰Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
 ¹¹Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
 ¹²Department of Physics, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
 ¹³Faculty of Physics, St. Kliment Ohridski University of Sofia, BG-1164 Sofia, Bulgaria
 ¹⁴IKP, University of Cologne, D-50937 Cologne, Germany

d(⁸⁶Kr,p)⁸⁷Kr – Collaborators

S. Siema, M. Wiedekingb, K. Siejac,d, D.L. Bleuele, C.P. Britsb,f, T.D. Bucherb, T.S. Dinokob, J.L. Eastonb,g, A. Görgena, M. Guttormsena, P. Jonesb, B.V. Kheswab,h, N.A. Khumalob, A.C. Larsena, E.A. Lawrieb, J.J. Lawrieb, S.N.T. Majolab,i, K.L. Malatjib,f, L. Makhathinib,f, B. Maqabukab,g, D. Negib, S.P. Noncolelab,g, P. Papkab,f, E. Sahina, R. Schwengnerj, G.M. Tvetena, F. Zeisera, B.R. Zikhalib,i

aDepartment of Physics, University of Oslo, N-0316 Oslo, Norway biThemba LABS, P.O. Box 722, 7129 Somerset West, South Africa cUniversité de Strasbourg, IPHC, 23 rue du Loess 67037 Strasbourg, France dCNRS, UMR7178, 67037 Strasbourg, France eLawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550-9234, USA fDepartment of Physics, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa gDepartment of Physics, University of the Western Cape, P/B X17 Bellville 7535, South Africa hDepartment of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa iDepartment of Physics, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa jInstitut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany

Acknowledgement

UiO **Department of Physics** University of Oslo

National Research Foundation 1999-2019 IJAN Laboratory for Accelerator Based Sciences

With funding from

The Research Council of Norway