A microscopic treatment of correlated nucleons: Collective properties in stable and exotic nuclei

Olivier VASSEUR

vasseur@ipno.in2p3.fr

Institut de Physique Nucléaire d'Orsay (IPN Orsay, France) Theory Group

PhD supervisor:Marcella Grasso (IPN Orsay, France)Co-supervisor:Danilo Gambacurta (ELI-NP, Romania)

General assumptions

Framework

- Low-energy scales
 - → nucleons are point-like, structureless particles relevant degrees of freedom = nucleons
- Solve the nuclear many-body problem
 - → Use of effective interactions → Energy-Density Functionals (EDF): functionals derived in most cases from effective interactions

Interdisciplinarity of many-body techniques

Atomic physics

Bose-Einstein condensate of ultra-cold trapped atoms

Chemistry & Condensed matter physics

Nuclei and other nuclear systems in the crust of neutron stars

Strong analogy between Energy-Density Functionals (EDF) and Density Functional Theory (DFT)

Challenge

Provide an accurate description of fragmentation and spreading width of excitations \longrightarrow Going beyond the mean-field approximation: coupling single-particle degrees of freedom with multiparticle-multihole configurations

Schematic view of giant resonances

Challenge

Provide an accurate description of fragmentation and spreading width of excitations \rightarrow Going beyond the mean-field approximation: coupling single-particle degrees of freedom with multiparticle-multihole configurations

Schematic view of giant resonances

• Starting point: Second RPA (SRPA) and its drawbacks

• Starting point: Second RPA (SRPA) and its drawbacks

2 Correction of SRPA: Subtraction method

- Starting point: Second RPA (SRPA) and its drawbacks
- **2** Correction of SRPA: Subtraction method
- **3** Extension of the SSRPA model

- Starting point: Second RPA (SRPA) and its drawbacks
- **2** Correction of SRPA: Subtraction method
- **3** Extension of the SSRPA model
- **4** Summary

Starting point: Second RPA (SRPA) and its drawbacks Formalism of Second RPA Problems of standard SRPA

Orrection of SRPA: Subtraction method

Principle of the subtraction procedure How subtraction deals with problems of SRPA

Extension of the SSRPA model Nuclei with partially-occupied orbitals Use of the equal-filling approximation

Ø Summary

Formalism of Second RPA

Choose the ground state $|0\rangle$ as the Hartree-Fock ground state

Define the excitation operator Q_{ν}^{\dagger} : $\begin{cases} Q_{\nu}^{\dagger} |0\rangle = |\nu\rangle \\ Q_{\nu} |0\rangle = 0 \end{cases}$

$$Q_{\nu}^{\dagger} := \sum_{m,i} \left(X_{mi}(\nu) a_{m}^{\dagger} a_{i} - Y_{mi}(\nu) a_{i}^{\dagger} a_{m} \right) \longrightarrow \frac{1 p 1 h}{(\text{RPA})} \\ + \sum_{\substack{m,n>m\\i,j>i}} \left(X_{mnij}(\nu) a_{m}^{\dagger} a_{n}^{\dagger} a_{j} a_{i} - Y_{mnij}(\nu) a_{i}^{\dagger} a_{j}^{\dagger} a_{n} a_{m} \right) \longrightarrow \frac{2 p 2 h}{(\text{SRPA})} \\ \text{SRPA equation:} \qquad \overbrace{\left(\begin{array}{c}A & B\\B^{*} & A^{*} \end{array}\right)}^{\text{Stability matrix}} \left(X(\nu) \\ Y(\nu) \right) = \hbar \omega_{\nu} \left(\begin{array}{c}G & 0\\0 & -G^{*} \end{array}\right) \left(X(\nu) \\ Y(\nu) \right) \\ \text{with} \quad A = \left(\begin{pmatrix}(A_{mi,nj}) & (A_{pk,minj})\\(A_{minj,pkl}) & (A_{minj,pkl}) \end{pmatrix} \text{ and } X(\nu) = \left(\begin{array}{c}X_{1}(\nu) \\ X_{2}(\nu) \end{array}\right) \\ \end{array}$$

$$A_{mi,nj} = \delta_{mn} \delta_{ij} (\epsilon_m - \epsilon_i) + v_{mjin}$$
 in the HF limit

Problems of standard SRPA

- Very strong shift to low energies
- Instabilities
- Double-counting of correlations
- Cutoff dependence with zero-range interactions

Thouless theorem does not hold in SRPA

Papakonstantinou, Phys. Rev. C 90, 024305 (2014)

Use of an effective interaction "EDF problems"

20 30 E (MeV) Gambacurta, Grasso et al., Phys. Rev. C 86, 021304 (R) (2012)

Starting point: Second RPA (SRPA) and its drawbacks Formalism of Second RPA Problems of standard SRPA

2 Correction of SRPA: Subtraction method

Principle of the subtraction procedure How subtraction deals with problems of SRPA

Extension of the SSRPA model Nuclei with partially-occupied orbitals Use of the equal-filling approximation

Ø Summary

- · The SRPA equation can be written as an energy-dependent RPA-like problem
- Removal of double-counting of correlations is achieved by imposing that the stability matrix in this energy-dependent RPA-like problem be equal, at zero energy, to the RPA stability matrix

Tselyaev, Phys. Rev. C 88, 054301 (2013)

- This translates into a subtraction of only 1p1h elements in , *e.g.* A_{11} becomes $A'_{11} := A_{11} - \Sigma(0)$ $\Sigma(0) : 2^{nd}$ -order self-energy at zero excitation energy $\Sigma(0) = -A_{12}A_{22}^{-1}A_{12}^{\dagger} + B_{12}({}^{t}A_{22})^{-1}B_{12}^{\dagger}$
- The subtraction has been successfully applied, dealing with all the drawbacks
 of SRPA
 Greener Greener Greener (Section 2010)

Gambacurta, Grasso, J. Engel, Phys. Rev. C 92, 034303 (2015)

Gambacurta, Grasso, Eur. Phys. J. A 52, 198 (2016)

How subtraction deals with problems of SRPA

Electric dipole strength and polarizability in ⁴⁸Ca

Gambacurta, Grasso, Vasseur, Phys. Lett. B 777, 163-168 (2018)

Quadrupole response: Systematics on medium- and heavy-mass nuclei Vasseur, Gambacurta, Grasso, Phys. Rev. C 98, 044313 (2018)

- Better reproduction of experimental values of centroids in SSRPA (for most nuclei)
- Coupling between 1p1h and 2p2h configurations (absent in RPA) → spreading

How subtraction deals with problems of SRPA

Grasso, Gambacurta, Vasseur, *Phys. Rev. C* 98, 051303(R) (2018) Effective masses in nuclear matter from axial breathing

modes in ⁴⁸Ca and ⁹⁰Zr

OF PHYSICUS MUCHAE

Starting point: Second RPA (SRPA) and its drawbacks Formalism of Second RPA Problems of standard SRPA

Orrection of SRPA: Subtraction method

Principle of the subtraction procedure How subtraction deals with problems of SRPA

③ Extension of the SSRPA model

Nuclei with partially-occupied orbitals Use of the equal-filling approximation

Output Summary

Nuclei with partially-occupied orbitals

· Initial limitation: Only nuclei with fully-occupied orbitals could be dealt with

Nuclei with partially-occupied orbitals

· Initial limitation: Only nuclei with fully-occupied orbitals could be dealt with

Equal-filling approximation (EFA) in spherical symmetry

On a (2j + 1)-degenerate orbital, the occupation probability of a nucleon equals $\frac{1}{2i+1}$ in all substates

Nuclei with partially-occupied orbitals

· Initial limitation: Only nuclei with fully-occupied orbitals could be dealt with

Equal-filling approximation (EFA) in spherical symmetry

On a (2j + 1)-degenerate orbital, the occupation probability of a nucleon equals $\frac{1}{2j+1}$ in all substates

• With a Hartee-Fock ground state, EFA \implies wave functions renormalized by a factor $\begin{cases} \sqrt{n_{\alpha}} & \text{if } \alpha \text{ hole state} \\ \sqrt{1-n_{\alpha}} & \text{if } \alpha \text{ particle state} \end{cases}$

· Initial limitation: Only nuclei with fully-occupied orbitals could be dealt with

Equal-filling approximation (EFA) in spherical symmetry

On a (2j + 1)-degenerate orbital, the occupation probability of a nucleon equals $\frac{1}{2j+1}$ in all substates

• With a Hartee-Fock ground state, EFA \implies wave functions renormalized by a factor $\begin{cases} \sqrt{n_{\alpha}} & \text{if } \alpha \text{ hole state} \\ \sqrt{1-n_{\alpha}} & \text{if } \alpha \text{ particle state} \end{cases}$

$$\implies e.g. \text{ in RPA: } A_{mi,nj} = \delta_{mn}\delta_{ij}(\epsilon_m - \epsilon_i) + v_{mjin}\sqrt{n_in_j(1 - n_m)(1 - n_n)}$$

· Initial limitation: Only nuclei with fully-occupied orbitals could be dealt with

Equal-filling approximation (EFA) in spherical symmetry

On a (2j + 1)-degenerate orbital, the occupation probability of a nucleon equals $\frac{1}{2j+1}$ in all substates

• With a Hartee-Fock ground state, EFA \implies wave functions renormalized by a factor $\begin{cases} \sqrt{n_{\alpha}} & \text{if } \alpha \text{ hole state} \\ \sqrt{1-n_{\alpha}} & \text{if } \alpha \text{ particle state} \end{cases}$

$$\implies e.g. \text{ in RPA: } A_{mi,nj} = \delta_{mn}\delta_{ij}(\epsilon_m - \epsilon_i) + v_{mjin}\sqrt{n_in_j(1 - n_m)(1 - n_n)}$$

Second step: calculate the occupation numbers in BCS
 → Estimation of pairing correlations

Low-energy quadrupole strength in Ar isotopes

Use of the equal-filling approximation

Low-energy quadrupole strength in Ar isotopes

Use of the equal-filling approximation

Low-energy quadrupole strength in Ar isotopes

Use of the equal-filling approximation

Low-energy quadrupole strength in Ar isotopes

- · A first attempt to include pairing correlations in SRPA
- The two rises corresponding to shell closures at N = 28 and N = 34 are not reproduced...
- ... but both the inclusion of 2p2h configurations and of pairing correlations improve the agreement with experiements

- Improve the description of fragmentation and width of resonances
 - \longrightarrow Need of a beyond-mean field description
 - \longrightarrow SRPA: Include more-complex configurations (2p2h)

- Improve the description of fragmentation and width of resonances
 - \longrightarrow Need of a beyond-mean field description
 - \longrightarrow SRPA: Include more-complex configurations (2p2h)
- Standard SRPA presents important formal problems \longrightarrow Subtraction method to address all the problems

- Improve the description of fragmentation and width of resonances
 - \longrightarrow Need of a beyond-mean field description
 - \longrightarrow SRPA: Include more-complex configurations (2p2h)
- Standard SRPA presents important formal problems \longrightarrow Subtraction method to address all the problems
- Extend the approach:
 - 1 Use the EFA to reach nuclei with non fully-occupied orbitals
 - 2 Renormalize matrix elements using occupation numbers
 - \longrightarrow First promising attempt of include pairing correlations in SSRPA

- Improve the description of fragmentation and width of resonances
 - \longrightarrow Need of a beyond-mean field description
 - \longrightarrow SRPA: Include more-complex configurations (2p2h)
- Standard SRPA presents important formal problems \longrightarrow Subtraction method to address all the problems
- Extend the approach:
 - 1 Use the EFA to reach nuclei with non fully-occupied orbitals
 - 2 Renormalize matrix elements using occupation numbers
 - \longrightarrow First promising attempt of include pairing correlations in SSRPA

Thank you for your attention!