### The neutron production facility at the Lawrence Berkeley National Laboratory

#### Darren L. Bleuel

Lawrence Livermore National Laboratory

First African Nuclear Physics Conference July 1-5, 2019



#### LLNL-PRES-780137

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC



## The 88-inch cyclotron is a K140 accelerator producing Z=1-92 beams (up to 65 MeV p,d's), operating since 1961.







# A neutron production facility has been developed at LBNL's 88-inch cyclotron over the past few decades

#### Sources:

- Deuteron breakup (white)
- <sup>7</sup>Li(p,n) (quasi-monoenergetic)

### Applications:

- Neutron energy spectral measurements
- Scintillator characterization
  - Timing
  - Light yield
  - Efficiency
- Equipment damage
- Isotope production cross sections

#### **Developing Capabilities (the future!):**

- FLUFFY Short-lifetime fission product yields
- GENESIS Inelastic scattering



The 88-inch cyclotron











Lawrence Livermore National Laboratory











Lawrence Livermore National Laboratory

### To mitigate frame overlap in energy spectral measurements, we developed a "double time-of-flight" technique



Lawrence Livermore National Laboratory

Harrig et. al, NIM A 877 (2018) 359.



### Using this "dToF" method, we were able to improve the 16 MeV <sup>9</sup>Be(d,n) deuteron breakup spectral measurement







## Using the same "dToF" method, we have characterized scintillator light yield lower in energy than ever before



Lawrence Livermore National Laboratory

Thanks to Thibault Laplace, Bethany Goldblum...



# The Berkeley Nuclear Data group has begun a program to measure cross sections important to isotope production



Lawrence Livermore National Laboratory

Thanks to Andrew Voyles



# We were part of a successful NDIWG grant to assemble FLUFFY to measure short-lived fission product yields

- High-intensity, short-burst neutron irradiations of <sup>235</sup>U, <sup>238</sup>U, <sup>239</sup>Pu targets
- Goal is to measure independent fission product yields with t<sub>1/2</sub><1s</li>





**FLUFFY:** Fast-Loading User Facility for Fission Yields



Thanks to Eric Matthews



# We just commissioned GENESIS in Cave 5, a new capability to measure triple-differential ( $E_n, E_{n'}, \Omega$ ) inelastic cross sections



LLNL-PRES-780137

Thanks to Joey Gordon



### Summary: Berkeley "neuterons" are intense, tunable, wellcollimated, and have an adjustable endpoint at 16-50 MeV

Breakup E/tgt Flux\* @ 5m (10 μA) Perfect for low-energy neutron 10<sup>5</sup> n/cm<sup>2</sup>/s 16 MeV d's on Ta cross section measurements needing high statistics 16 MeV d's on Be 10<sup>6</sup> n/cm<sup>2</sup>/s 33 MeV d's on Be 10<sup>7</sup> n/cm<sup>2</sup>/s ×10<sup>6</sup> 50 MeV d's on Be  $2x10^7$  n/cm<sup>2</sup>/s 4000  $(10^{11} \text{ n/cm}^2/\text{s} @7.5 \text{cm})$ 3500 Neutrons/µC/sr/MeV 3000 Radiographic <sup>-10</sup> film 2500 -5 2000 СШ 0 16 MeV d's 1500 5 on Be 10 1000 **1** 500 -10 -5 5 10 0 0 Berkeley ♥'s neutrons. 2 18 20 12 16 0 4 6 8 10 14 And our neutrons V us! Neutron Energy (MeV)

rence Livermore National Laboratory I NI -PRES-780137

\*Meulders, et. al., Phys. Med. Biol., 1975, 20(2), 235, (1975)



0.8

0.6

0.4

0.2

Relative Intensity

Thanks!

UC Fee NPI@NIF grant launches UCB/LLNL collaboration: 2012

Branching out: 2014

This vast variety of neutron capabilities are the result of many dozens of students' and postdocs' efforts through a very successful collaboration (BANG) between LBNL, LLNL, and UCB over the past seven years.

Realizing we need to take group photos more often: 2018

Lawrence Livermore National Laboratory