

Experimental studies on the nuclear chirality in the A~80 mass region

- Speaker: Chen Liu (刘晨)
- Shandong University, Weihai

OUTLINE

• Introduction

- Experiment Details
- Result and Discussions
- Conclusion

Chiral symmetry breaking in nuclei

Chirality exists commonly in nature.

Chiral symmetry breaking in nuclei

Frauendorf97

chiral symmetry breaking

In 1997, Frauendorf and Meng pointed out that the rotation of triaxial nuclei may attain a chiral character -- chiral doublet bands.

Expected exp. signal:

Two near degenerate $\Delta I = 1$ bands, called chiral doublet bands

Chiral symmetry breaking in nuclei

VOLUME 86, NUMBER 6

PHYSICAL REVIEW LETTERS

5 FEBRUARY 2001

Chiral Doublet Structures in Odd-Odd N = 75 Isotones: Chiral Vibrations

Chiral nuclei "islands"

• So far, candidates for chiral doublet bands have been observed experimentally in about 40 cases of odd-odd, odd-A and even-even nuclei.

Multiple chiral doublet bands in nuclei

PHYSICAL REVIEW C 73, 037303 (2006)

Possible existence of multiple chiral doublets in ¹⁰⁶Rh

J. Meng,^{1,2,3,*} J. Peng,¹ S. Q. Zhang,¹ and S.-G. Zhou^{2,3} ¹School of Physics, Peking University, Beijing 100871, China ²Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100080, China ³Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000, China (Received 30 March 2005; published 15 March 2006)

PRL 110, 172504 (2013)

PHYSICAL REVIEW LETTERS

week ending 26 APRIL 2013

week ending 18 MARCH 2016

Evidence for Multiple Chiral Doublet Bands in ¹³³Ce

A. D. Ayangeakaa,¹ U. Garg,¹ M. D. Anthony,¹ S. Frauendorf,¹ J. T. Matta,¹ B. K. Nayak,^{1,*} D. Patel,¹ Q. B. Chen (陈启博),² S. Q. Zhang (张双全),² P. W. Zhao (赵鹏巍),² B. Qi (亓斌),³ J. Meng (孟杰),^{2,4,5} R. V. F. Janssens,⁶ M. P. Carpenter,⁶ C. J. Chiara,^{6,7} F. G. Kondev,⁸ T. Lauritsen,⁶ D. Seweryniak,⁶ S. Zhu,⁶ PRL **113**, 032501 (2014) PHYSICAL REVIEW LETTERS week ending 18 JULY 2014

Multiple Chiral Doublet Bands of Identical Configuration in ¹⁰³Rh

I. Kuti,¹ Q. B. Chen,² J. Timár,¹ D. Sohler,¹ S. Q. Zhang,² Z. H. Zhang,² P. W. Zhao,² J. Meng,² K. Starosta,³ T. Koike,⁴ E. S. Paul,⁵ D. B. Fossan,⁶ and C. Vaman⁶ ¹Institute for Nuclear Research, Hungarian Academy of Sciences, Pf. 51, 4001 Debrecen, Hungary ²State Key Laboratory of Physics and Technology, School of Physics, Peking University, Beijing 100871, China

PRL 116, 112501 (2016) PHYSICAL REVIEW LETTERS

Evidence for Octupole Correlations in Multiple Chiral Doublet Bands

C. Liu (刘晨),¹ S. Y. Wang (王守宇),^{1,†} R. A. Bark,² S. Q. Zhang (张双全),^{3,‡} J. Meng (孟杰),^{3,4,5,§} B. Qi (亓斌),¹ P. Jones,² S. M. Wyngaardt,⁵ J. Zhao (赵杰),^{6,7} C. Xu (徐川),³ S.-G. Zhou (周善贵),⁶ S. Wang (王硕),¹ D. P. Sun (孙大鹏),¹ L. Liu (刘雷),¹ Z. Q. Li (李志泉),¹ N. B. Zhang (张乃波),¹ H. Jia (贾慧),¹ X. Q. Li (李湘庆),³ H. Hua (华辉),³ Q. B. Chen (陈启博),³ Z. G. Xiao (肖志刚),^{8,9} H. J. Li (李红洁),⁸ L. H. Zhu (竺礼华),⁴ T. D. Bucher,^{2,5} T. Dinoko,^{2,10} J. Easton,^{2,10} K. Juhász,^{11,*} A. Kamblawe,^{2,5} E. Khaleel,^{2,5} N. Khumalo,^{2,10,12} E. A. Lawrie,² J. J. Lawrie,² S. N. T. Majola,^{2,13} S. M. Mullins,² S. Murray,² J. Ndayishimye,^{2,5} D. Negi,² S. P. Noncolela,^{2,10} S. S. Ntshangase,¹² B. M. Nyakó,¹⁴ J. N. Orce,¹⁰ P. Papka,^{2,5} J. F. Sharpey-Schafer,^{2,10} O. Shirinda,² P. Sithole,^{2,10} M. A. Stankiewicz,^{2,13} and M. Wiedeking²

Possible multiple chiral doublet bands in ¹⁰⁷Ag

B. Qi (亓斌), H. Jia (贾慧), N. B. Zhang (张乃波), C. Liu (刘晨), and S. Y. Wang (王守宇)* Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, School of Space Science and Physics, Shandong University, Weihai 264209, People's Republic of China (Received 14 July 2013; published 13 August 2013) In 2006, a study based on the relativistic mean field (RMF) theory suggested that multiple chiral doublet bands could exist in single nucleus.

The experimental evidences for multiple chiral bands were reported in ¹³³Ce, ¹⁰³Rh, ⁷⁸Br, and possibly in ¹⁰⁷Ag.

Chirality in A~100 & 130 mass region

Most studies on nuclear chirality have focused on the 100 and 130 mass regions at first.

> J. Meng, and S. Q. Zhang, J. Phys. G 37 (2010) 064025. B. W. Xiong, Y. Y. Wang, arXiv: 1804.04437.

Chirality in A~190 mass region

- It is necessary to search for more candidates in other mass regions to show that these chiral symmetry properties are of a general nature and not related only to a specific nuclear mass region.
- Recently, a pair of negative-parity partner bands in ¹⁹⁸Tl have been suggested as candidate chiral bands.
 - E. Lawrie et al., PRC78,021305(R) (2008).J. Ndayishimye et al., SAIP2013 Conf. Proc., P. 302 (2013).P. L. Masiteng et al., Eur. Phys. J. A 50, 119(2014)

New chiral island ?

N

37				76	77	78	79	80	81	82	83	84	85
51				Rb	Rb	Rb							
36			74	75	76	77	78	79	80	81	82	83	
50			Kr	Kr									
35		72	73	74	75	76	77	78	79	80	81	82	1
55		Br	Br										
34		71	72	73	74	75	76	77	78	79	× .		
34		Se	2.1										
33	69	70	71	72	73	74	75	76	77				
55	As												

New chiral island ?

N

Ζ

On-going works

	36	37	38	39	40	41	42	43	44	45	46	47	48
33	69 <mark>As</mark>	70 <mark>As</mark>	71 <mark>As</mark>	72 <mark>As</mark>	73 <mark>As</mark>	74 <mark>As</mark>	75 <mark>As</mark>	76 <mark>As</mark>	77 <mark>As</mark>				
34		71 Se	72 <mark>Se</mark>	73 Se	74 Se	75 Se	76 <mark>Se</mark>	77 Se	78 <mark>Se</mark>	79 Se	5/		
35		72 Br	73 Br	74 Br	75 Br	76 Br	77 Br	78 Br	79 Br	80 Br	81 Br	82 Br	
36			74 Kr	75 <mark>Kr</mark>	76 Kr	77 Kr	78 <mark>Kr</mark>	79 <mark>Kr</mark>	80 Kr	81 Kr	82 Kr	83 Kr	
37				76 <mark>Rb</mark>	77 <mark>Rb</mark>	78 <mark>Rb</mark>	79 <mark>Rb</mark>	80 <mark>Rb</mark>	81 <mark>Rb</mark>	82 Rb	83 Rb	84 <mark>Rb</mark>	85 Rb

OUTLINE

• Introduction

- Experiment Details
- Result and Discussions
- Conclusion

Experimental details

China Institute of Atomic Energy @2015

Experimental details

iThemba LABS, South Africa @2009&2012&2015

AFRODITE

Chessboard

DIAMANT

Experiments in iThemba LABS

March 2009

February 2012

July 2015

Level scheme for ⁸⁰Br

shown by stars and red lines.

The two bands maintain an energy difference around 400 keV.

The two bands maintain an energy difference around 400 keV.

The B(M1)/B(E2) ratios for the two bands are similar. The ratios for band 1 show clearly the odd-even staggering as a function of spin.

- The two bands maintain an energy difference around 400 keV.
- The B(M1)/B(E2) ratios for the two bands are similar. The ratios for band 1 show clearly the odd-even staggering as a function of spin.
- Taking the experimental results into account, bands 1 and 2 in ⁸⁰Br may be considered as candidate for chiral doublet bands.

The PRM calculations for ⁸⁰Br

One can see that the PRM calculations reproduce the main features of the data well.

It can be seen that the agreement for the B(M1)/B(E2) ratios at the whole spin region is excellent.

A new "Chiral island"

➢A~80 mass region: a newly observed "chiral island"

Level scheme for ⁷⁸Br

Two pairs of positive-and negative-parity doublet bands together with eight strong electric dipole transitions linking their yrast positive- and negative-parity bands have been identified

> One distinct feature of the level scheme is the presence of two pairs of

nearly degenerate doublet bands.

- Bands 1 and 2 show similar experimental features with the chiral doublet bands observed in ⁸⁰Br, therefore bands 1 and 2 are suggested as chiral doublet bands.
- Bands 3 and 4 show similar experimental features, forming another pair of chiral doublet bands.

The microscopic multidimensionallyconstrained covariant density functional theory (MDC-CDFT) and triaxial particle the rotor model (TPRM) calculations have been performed to investigated the two pairs of nearly degenerate bands. Good agreement between the calculated values and the available experimental data are found, which

supports the present configuration

assignments.

Lu12, Zhao12, Lu14, Wang07, Zhang07, Wang08, Wang10

The effective angles between the angular momentum vectors of the valence proton, valence neutron, and core for the two pairs of doublet bands.

The effective angles are equal to or greater than 45° for the two pairs of doublet bands in the observed spin region, which indicates clear nonplanar rotations for bands 1, 2 and bands 3, 4. This allows the two pairs of bands to be interpreted as pairs of chiral doublet bands, thereby forming MxD bands.

Two pairs of positive-and negative-parity doublet bands in ⁷⁸Br were interpreted

as M χ D bands with $\pi g_{9/2} \otimes v g_{9/2}$ and $\pi f_{5/2} \otimes v g_{9/2}$ configurations.

> One more distinct feature of the level scheme is the observation of eight E1 linking transitions between the positive-parity band 1 and the negative-

The observation of the E1 transitions between bands 1 and 3 implies the existence of the octupole correlations in 78 Br.

The observation of the octupole correlations implies strong mixing between the $\pi p_{3/2}$ and $\pi f_{5/2}$ components due to triaxiality and pseudospin

The experimental B(E1)/B(E2) ratios (a) and energy displacement δE (b) between the positive- and negative-parity bands as a function of spin in 78Br, together with those in 125Ba and 224Th

- Octupole correlations were reported in ¹²⁵Ba while stable octupole deformation was reported in ²²⁴Th.
- The B(E1)/B(E2) and δE of ⁷⁸Br are comparable with those in ¹²⁵Ba, indicate that octupole correlations exist in ⁷⁸Br.
- The B(E1)/B(E2) branching ratios increase and δE decreases with spin, which indicate that the octupole correlations enhance with spin.

Mason 05, Ackermann93

The potential energy surface of ⁷⁸Br calculated using the MDC-CDFT approach.

- > The potential energy surface is very soft with respect to the shape degree of freedom β_{30} , which supports the octupole correlations in ⁷⁸Br.
- Nuclear chirality can be robust against the octupole correlations.

Evidence for Octupole Correlations in Multiple Chiral Double Bands

Level scheme for ⁸²Br

The PRM calculations for ⁸²Br

The doublet bands in ⁸²Br have small energy differences, smooth variation *S(I)*, almost identical *B(M1)/B(E2)* ratios within the observed spin interval.
 The PRM calculations well reproduce the experimental results, which supports the present configuration assignments.

The PRM calculations for ⁸²Br

- Comparing to the ideal chiral geometry in ⁸²Br, the coupling patterns of angular momenta in ⁷⁸Br and ⁸⁰Br both somewhat deviate from the ideal chiral geometry.
- > The addition of the neutrons in ⁸²Br leads to the stabilization of chirality.

K plot of ^{78,80,82}Br

A better chirality is exhibited in ⁸²Br than ⁷⁸Br and ⁸⁰Br.

The probability distributions for projection of total angular momentum on the long (*l*-), intermediate (*i*-) and short (*s*-) axis in TPRM for the doublet bands in ⁷⁸Br,⁸⁰Br, and ⁸²Br.

New chiral nucleus in the A~80 mass region - 173

✓ Chiral doublet bands were observed in ⁸²Br.

 ✓ By examining the angular momentum geometry and the K plot, a better chirality is exhibited in ⁸²Br than ⁷⁸Br and ⁸⁰Br.

C. Liu, S. Y. Wang et al., Unpublished

Level scheme for ⁷⁶Br

Band 1

Level scheme for ⁷⁶Br

New chiral island

N

Z		C 🚺	Chiral n On-goin	nuclei ng work	s	⁸⁰ Br: S ⁷⁸ Br: C ⁸² Br: C ⁷⁶ Br: W	. Y. Wa . Liu et . Liu et /. Z. Xu	ing et al al., Phy al., unp i et al.,	., Phys s. Rev. ublishe in prog	. Lett. E Lett. 1: ed gress	3703, 4 16, 112!	0(2011) 501(201	6)
37				76 Rb	77 Rb	78 Rb	79 Rb	80 Rb	81 Rb	82 Rb	83 Rb	84 Rb	85 Rb
36			74 Kr	75 Kr	76 <mark>Kr</mark>	77 Kr	78 Kr	79 Kr	80 Kr	81 Kr	82 Kr	83 Kr	
35		72 Br	73 Br	74 Br	75 Br	76 Br	77 Br	78 Br	79 <mark>Br</mark>	80 Br	81 Br	82 Br	
34		71 Se	72 Se	73 Se	74 Se	75 <mark>Se</mark>	76 <mark>Se</mark>	77 Se	78 <mark>Se</mark>	79 Se			
33	69 <mark>As</mark>	70 As	71 As	72 As	73 As	74 As	75 <mark>As</mark>	76 <mark>As</mark>	77 As	S			
	36	37	38	39	40	41	42	43	44	45	46	47	48

Where is the boundary of this chiral island 2113

) 🚺	Chiral r On-goir	nuclei ng work	⁷⁸ Rk ⁸¹ Kr ⁷⁴ Br ⁷⁴ As ⁷⁴ As	 ⁷⁸Rb: Z. Q. Li et al., in progress. Argonne National laboratory, ⁸¹Kr: L. Mu et al., in progress. iThemba LABS, SA ⁷⁴Br: R. J. Guo et al., in progress. iThemba LABS, SA ⁷⁴As: X. Xiao et al., in progress. iThemba LABS, SA ⁷⁶As: D. P. Sun et al., in progress. iThemba LABS, SA 									
37				76 Rb	77 Rb	78 Rb	79 Rb	80 Rb	81 Rb	82 Rb	83 Rb	84 Rb	85 Rb		
36			74 Kr	75 Kr	76 Kr	77 Kr	78 Kr	79 Kr	80 Kr	81 Kr	82 Kr	83 Kr	1		
35		72 Br	73 Br	74 Br	75 Br	76 Br	77 Br	78 Br	79 Br	80 Br	81 Br	82 Br	Í		
34		71 Se	72 Se	73 Se	74 Se	75 Se	76 Se	77 Se	78 Se	79 Se					
33	69 <mark>As</mark>	70 As	71 As	72 As	73 As	74 As	75 As	76 As	77 As	N					
	36	37	38	39	40	41	42	43	44	45	46	47	48		

Conclusion

- Performed several experimental studies on the nuclear chirality in the A~80 mass region.
- > Reported the first candidate for chiral nuclei in the A ~ 80 mass region: 80 Br.
- Reported the first example of chiral geometry in octupole soft nuclei and indicates that nuclear chirality can be robust against the octupole correlations.
- Chiral doublet bands were also observed in ⁸²Br, and a better chirality was found in ⁸²Br than ⁷⁸Br and ⁸⁰Br.
- Other experimental studies on the nuclear chirality in the A~80 mass region are still in progress.

Thank you for your attention!