
African Nuclear Physics Conference

Contribution ID: 49

Type: Oral

The Structure of ³³Si,³⁵S and the magicity of the N=20 gap at Z=14,16

The structure of ³³Si and ³⁵S was studied by one-neutron knockout reactions from ³⁶S and ³⁴Si beams at 88 MeV/u incident on a ⁹Be target. The prompt γ -rays following the de-excitation of ³³Si and ³⁵S were detected using the GRETINA γ -ray tracking array while the reaction residues were identified on an event-by-event basis in the focal plane of the S800 spectrometer at NSCL (National Superconducting Cyclotron Laboratory). The -1n reaction makes it possible to probe the neutron Fermi surface and its evolution between ³⁴Si and ³⁶S to see which of the nuclei ³⁴Si, ³⁶S or ⁴⁰Ca has the most (doubly) magic behaviour. The study of ⁴⁰Ca was performed previously using direct kinematics and it was observed that ⁴⁰Ca has a lot of ground state correlations. A previous ³⁴Si(-1n) knockout experiment was performed which could account for only three states in ³³Si due to limited statistics. The current experiment addresses limitations of the previous ³⁴Si(-1n) knockout experiment addresses limitations. A level scheme has been built up to 5.5 MeV using the analysis of $\gamma\gamma$ coincidences. In addition parallel momentum distributions have been constructed and compared with theoretical predictions enabling orbital angular momentum assignments to each state. Spectroscopic factors obtained in this work are in good agreement with those from the previous ³⁴Si (-1n) reaction. In this presentation, I will show the latest results from these N=20 nuclei ³³Si , ³⁵S and compare to previous work and elaborate on future planned measurements at iThemba LABS.

This work is supported by the National Research Foundation of South Africa (NRF).

Primary authors: Ms JONGILE, Sandile (Stellenbosch University/iThemba LABS/GANIL); Dr SORLIN, Olivier (GANIL); Dr ANTOINE, Lemasson (Grand Acc\'el\'erateur National d'Ions Lourds (GANIL), Boulevard Henri Becquerel, 14000 Caen, France); Dr WIEDEKING, Mathis (iThemba LABS); Prof. PAPKA, Paul (iThemba LABS); GRETI-NA-S800 COLLABORATION (National Superconducting Cyclotron Laboratory)

Presenter: Ms JONGILE, Sandile (Stellenbosch University/iThemba LABS/GANIL)