Exploring Nuclear Astrophysicswith Heavy-Ion Storage Rings

Yuri A. Litvinov

African Nuclear Physics Conference Kruger National Park, South Africa, 1-5 July 2019

Physics at Storage Rings

Storage rings stay for:

Single-particle sensitivity
Broad-band measurements
High atomic charge states
High resolving power

Physics with Storage Rings

500

0009

150

Nuclear Physics

Nuclear structure through transfer reactions

Long-lived isomeric states

Atomic effects on nuclear half-lives

Half-life measurements of ⁷Be

Nuclear effects on atomic decay rates

Exotic decay modes (NEEC/NEET, unbound states, ...)

Di-electronic recombination on exotic nuclei

Purification of secondary beams from contaminants

Nuclear magnetic moments

Neutron-induced reactions

Capture reactions for p-process

. . . .

Atomic Physics

Precision x-ray spectroscopy

Super-Critical fields

Electron-Ion collisions

Atomic lifetimes

Nuclear effects on atomic decay rates

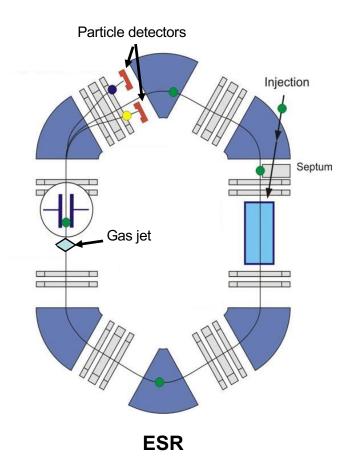
Photoionization

Di-electronic recombination on exotic nuclei

Electron spectroscopy / electron scattering

Atom/Molecule fragmentation

Ion-molecule interactions


Laser induced recombination

• • • •

Nuclear reaction studies in a storage ring

High revolution frequency

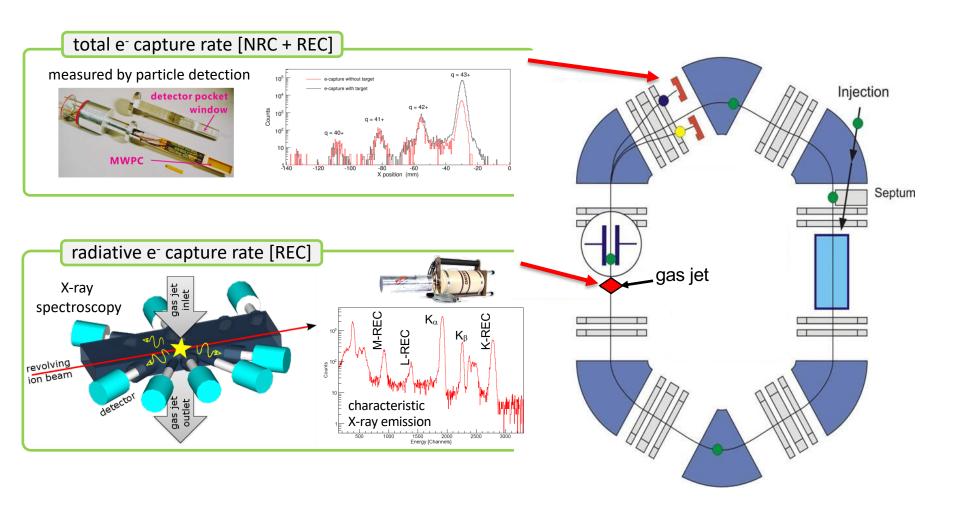
→ high luminosity even with thin targets
Detection of ions via in-ring particle detectors

ightarrow low background, high efficiency

Well-known charge-exchange rates

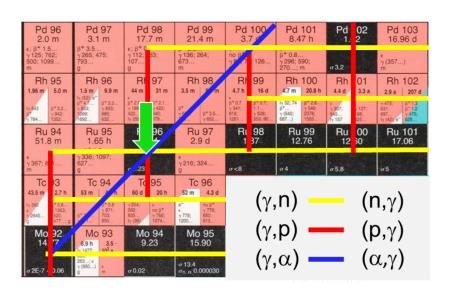
→ in-situ luminosity monitor

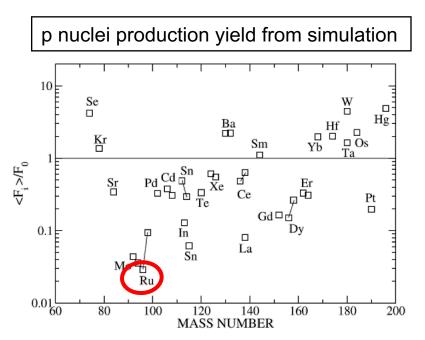
Ultra-thin windowless gas targets


→ excellent resolution

Applicable to radioactive nuclei

Normalization of Nuclear Cross Sections

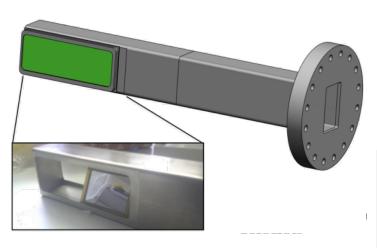


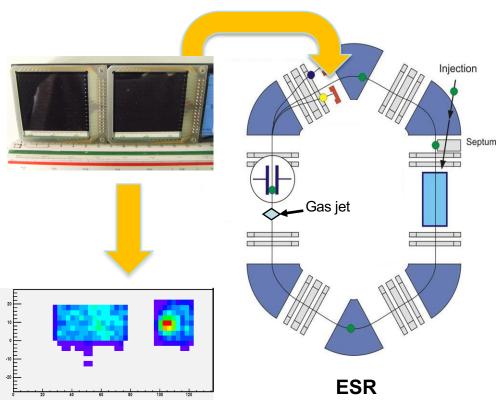


The Proof-Of-Concept 96 Ru(p, γ) 97 Rh (2008)

- ⁹⁶Ru is a p nucleus
- it is largely underproduced by models
- proton-capture is important to understand production/destruction in star
- > perfect stable beam for a proof-of-concept experiment

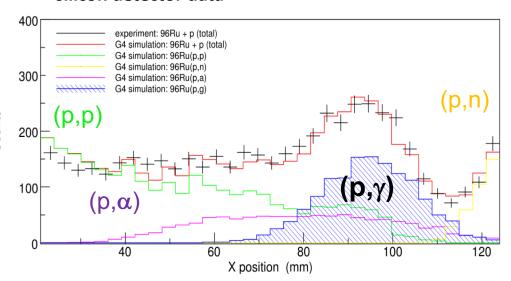
Simplified γ process network around ⁹⁶Ru


Rapp et al. ApJ 653 (2006) 474



⁹⁶Ru(p,g)⁹⁷Rh Experiment at the ESR

double sided silicon strip detectors (16 x 16 strips) (energy and position resolution) inside vacuum pocket



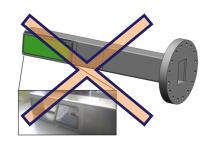
The Proof-Of-Concept 96 Ru(p, γ) 97 Rh (2008)

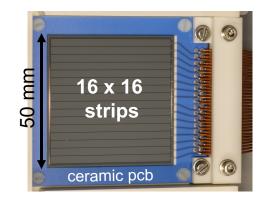
silicon detector data

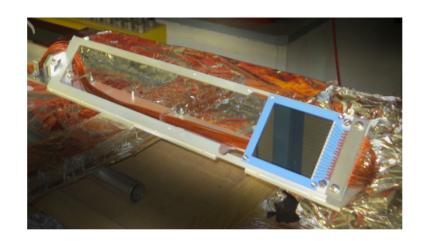
- (p,γ) superimposed by other channels
- Geant4 simulation of each channel
 - disentangle different contributions
- clean extraction of (p,γ) signal

PHYSICAL REVIEW C **92**, 035803 (2015)

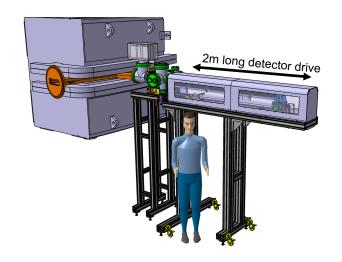
First measurement of the 96 Ru (p, γ) 97 Rh cross section for the p process with a storage ring

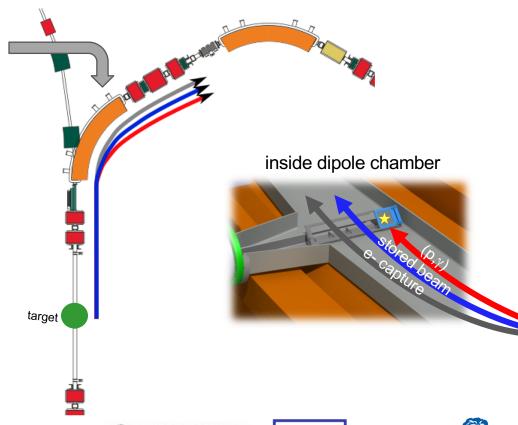

Bo Mei, ^{1,2} Thomas Aumann, ³ Shawn Bishop, ⁴ Klaus Blaum, ⁵ Konstanze Boretzky, ¹ Fritz Bosch, ¹ Carsten Brandau, ¹ Harald Bräuning, ¹ Thomas Davinson, ⁶ Iris Dillmann, ¹ Christina Dimopoulou, ¹ Olga Ershova, ² Zsolt Fülöp, ⁷ Hans Geissel, ¹ Jan Glorius, ² György Gyürky, ⁷ Michael Heil, ¹ Franz Käppeler, ⁸ Aleksandra Kelic-Heil, ¹ Christophor Kozhuharov, ¹ Christoph Langer, ⁹ Tudi Le Bleis, ⁴ Yuri Litvinov, ¹ Gavin Lotay, ⁶ Justyna Marganiec, ¹ Gottfried Münzenberg, ¹ Fritz Nolden, ¹ Nikolaos Petridis, ¹ Ralf Plag, ^{1,2} Ulrich Popp, ¹ Ganna Rastrepina, ² René Reifarth, ^{2,*} Björn Riese, ¹ Catherine Rigollet, ¹⁰ Christoph Scheidenberger, ¹ Haik Simon, ¹ Kerstin Sonnabend, ² Markus Steck, ¹ Thomas Stöhlker, ^{1,11} Tamás Szücs, ⁷ Klaus Sümmerer, ¹ Günter Weber, ^{1,11} Helmut Weick, ¹ Danyal Winters, ¹ Natalya Winters, ¹ Philip Woods, ⁶ and Qiping Zhong ¹



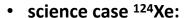

New in-vacuum particle detectors

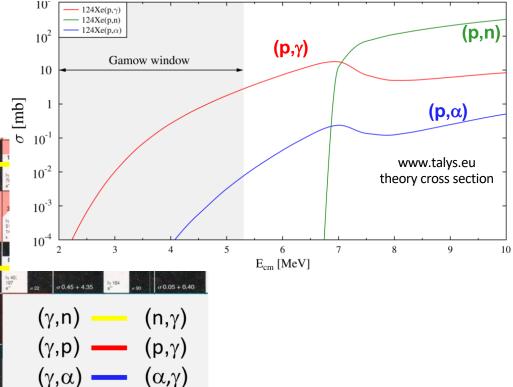
How to reach the down into the Gamow window? getting rid of detector pockets


- Double Sided Silicon Strip Detector (DSSSD)
 - √ x & y segmentation
 - √ 500 µm thickness (ions are stopped)
 - ✓ ultra thin dead layer of 0.3 µm
- compatible to UHV conditions
 - √ low outgassing rate
 - √ bakeable at T > 125°C

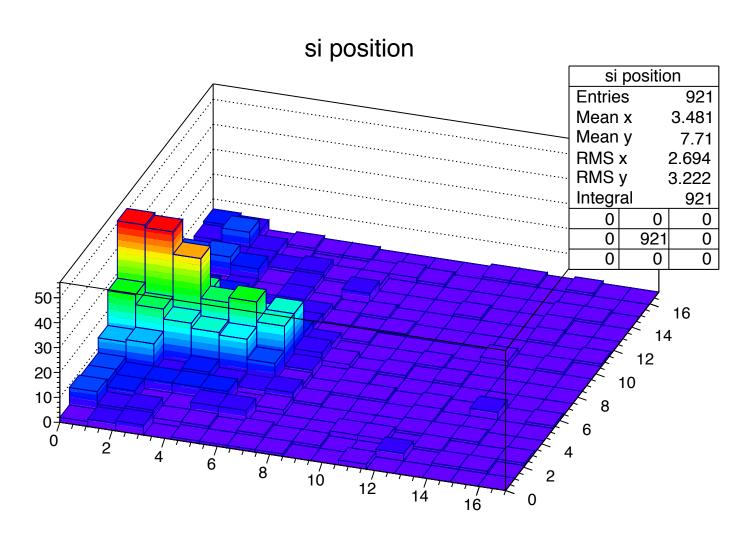


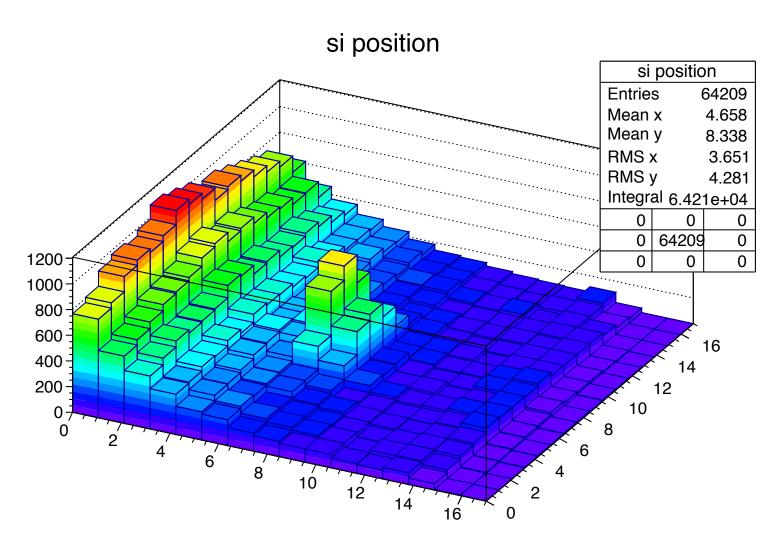
The new setup @ ESR

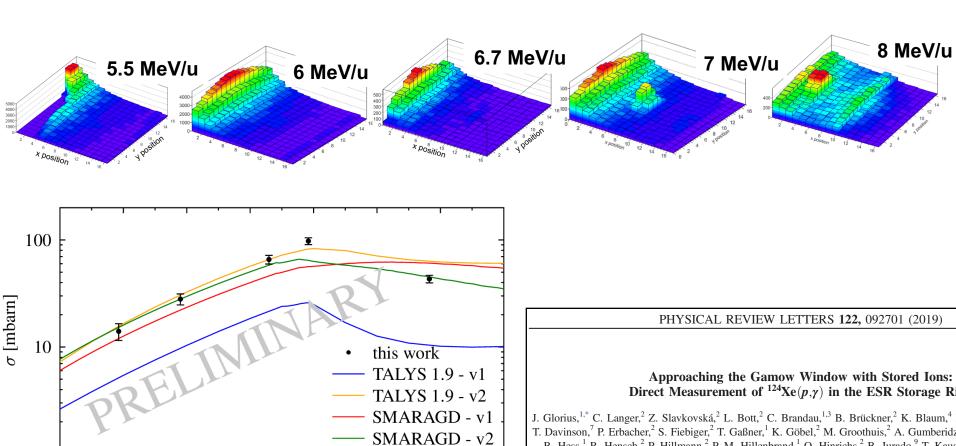



ESR Test Beam Time 2016 124 Xe(p, γ) 125 Cs

- test experiment for new setup:
 - > 124Xe: technically simple, stable beam, high intensity
 - > 10-100 mbarn cross section expected for proton capture @ 7 MeV/u


- ✓ p nucleus
- ✓ reaction is important
 in production/destruction


¹²⁴Xe(p,g)¹²⁵Cs Experiment at the ESR


¹²⁴Xe(p,g)¹²⁵Cs Experiment at the ESR

124 Xe(p, γ) - Results

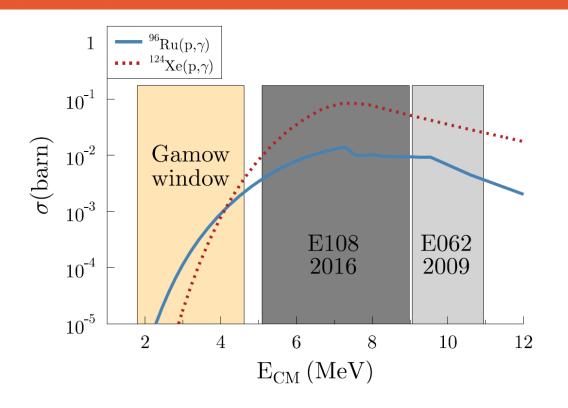
5.0

5.5

J. Glorius, ^{1,*} C. Langer, ² Z. Slavkovská, ² L. Bott, ² C. Brandau, ^{1,3} B. Brückner, ² K. Blaum, ⁴ T. Davinson, ⁷ P. Erbacher, ² S. Fiebiger, ² T. Gaßner, ¹ K. Göbel, ² M. Groothuis, ² A. Gumberida R. Hess, ¹ R. Hensch, ² P. Hillmann, ² P.-M. Hillenbrand, ¹ O. Hinrichs, ² B. Jurado, ⁹ T. Kaus T. Kisselbach, ² N. Klapper, ² C. Kozhuharov, ¹ D. Kurtulgil, ² G. Lane, ¹⁰ C. Lederer-Woods, ⁷ M. Yu. A. Litvinov, ¹ B. Löher, ^{11,1} F. Nolden, ¹ N. Petridis, ¹ U. Popp, ¹ T. Rauscher, ^{12,13} M. Reed, ¹⁰ R. D. Savran, ¹ H. Simon, ¹ U. Spillmann, ¹ M. Steck, ¹ T. Stöhlker, ^{1,14} J. Stumm, ² A. Surzhykov, ^{15,16} A. Taremi Zadeh, ² B. Thomas, ² S. Yu. Torilov, ¹⁷ H. Törnqvist, ^{1,11} M. Träger, ¹ C. Trageser, ^{1,3} M. Volknandt, ² H. Weick, ¹ M. Weigand, ² C. Wolf, ² P. J. Woods, ⁷ and Y. M.

6.5

E_{CM} [MeV]


7.0

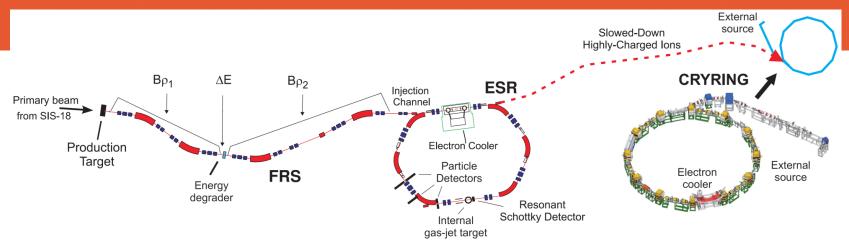
7.5

8.0

6.0

Future measurements

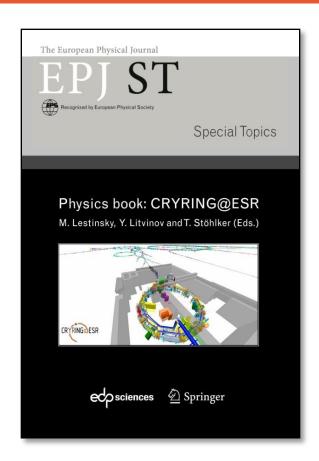
E127 R. Reifarth et al.



Regarding the proposal "Measurements of proton-induced reaction rates on radioactive isotopes for the astrophysical p process" (Proposal E127), the G-PAC recommends this proposal with **highest priority** (A) and that **15 shifts of main beam time** be allocated for this measurement.

The CRYRING facility

- CRYRING is a dedicated low-energy storage ring
 - > all GSI beams available between ~100 keV/u and ~15 MeV/u
 - longer beam lifetimes for highly charged ions at low energies
- · first commissioning phase is finished
- · CRYRING is the ideal machine for
- · astrophysical reaction studies



Two basis publications

Techinical Design Report: TSR@ISOLDE (2012)

Physics book: CRYRING@ESR (2016)

Thank you!

We are supported by:

FAIR: SPARC/APPA Facilities

