

Kruger National Park South Africa 1 - 5 July 2019 www.anpc2019.tlabs.ac.za

COULOMB EXCITATION AT LNL WITH SPIDER-GALILEO SETUP

ADRIANA NANNINI INFN — FIRENZE

Istituto Nazionale di Fisica Nucleare

INFN

Low-energy Coulomb excitation is a powerful and direct experimental tool to study nuclear collectivity and shapes.

the excitation process is purely electromagnetic

Low-energy Coulomb excitation is a powerful and direct experimental tool to study nuclear collectivity and shapes.

- the excitation process is purely electromagnetic
- cross-sections give a measure of the matrix elements of the e.m. operators

$$B\left(\Omega L; J_i \longrightarrow J_f\right) = \frac{1}{2J_i + 1} \left| \langle J_f || M(\Omega L) || J_i \rangle \right|^2$$

Low-energy Coulomb excitation is a powerful and direct experimental tool to study nuclear collectivity and shapes.

- the excitation process is purely electromagnetic
- cross-sections give a measure of the matrix elements of the e.m. operators

$$B\left(\Omega L; J_i \longrightarrow J_f\right) = \frac{1}{2J_i + 1} \left| \langle J_f | | M(\Omega L) | | J_i \rangle \right|^2$$

 diagonal matrix elements (spectroscopic quadrupole moments) give a measure of charge distribution

$$Q_{s}\left(J\right) = \sqrt{\frac{16\pi}{5}} \frac{\langle JJ20|JJ\rangle}{\sqrt{2J+1}} \langle J||E2||J\rangle$$

Low-energy Coulomb excitation is a powerful and direct experimental tool to study nuclear collectivity and shapes.

- the excitation process is purely electromagnetic
- cross-sections give a measure of the matrix elements of the e.m. operators

$$B\left(\Omega L; J_i \longrightarrow J_f\right) = \frac{1}{2J_i + 1} \left| \langle J_f | | M(\Omega L) | | J_i \rangle \right|^2$$

 diagonal matrix elements (spectroscopic quadrupole moments) give a measure of charge distribution

$$Q_s\left(J\right) = \sqrt{\frac{16\pi}{5}} \frac{\langle JJ20|JJ\rangle}{\sqrt{2J+1}} \langle J ||E2||J\rangle$$

 complete set of E2 matrix elements brings information on shape parameters via the quadrupole sum rules

COULOMB EXCITATION MEASUREMENTS

- germanium detectors to detect γ-rays
 - Doppler correction of γ-ray spectra

COULOMB EXCITATION MEASUREMENTS

- germanium detectors to detect γ-rays
- segmented particle detector to detect the scattered projectiles and/or recoiling target nuclei
 - to select Coulomb Excitation events
 - to determine scattering angle and reconstruct the kinematics of the reaction
 - to perform Doppler correction

WHY COULOMB EXCITATION @ LNL?

- The SPES ISOL facility for radioactive beams under construction
- Coulomb excitation ideal first day experiment

THE SPIDER - GALILEO SETUP

ANPC - Kruger National Park 1-5 July 2019

THE SPIDER - GALILEO SETUP

GALILEO 1st Phase

- 25 HPGe Compton-suppressed detectors (GASP type)
- FWHM (@1332.5 keV) < 2.4 keV</p>
- Efficiency (@1332.5 keV) = 2.1%
- Complete digital DAQ (takes advantage of the developments made for AGATA):
 - Trigger-less mode
 - Typical operational rate ~ 20 kHz/det
 - Common clock synchronization

THE SPIDER - GALILEO SETUP

SPIDER Silicon Ple DEtectoR

- 8 independent sectors, 8 strips + guard ring
- Detector thickness ~ 300 µm
- **FWHM** ~21 keV for **α**-particles @ ~5.5 MeV
- modularity: with GALILEO cone configuration (7 sectors) at backward angles $\Rightarrow \Delta \Theta = 37.4^{\circ}, \Omega/4\pi = 17.3\%$

Any possibilities for Coulex with stable beams?

ANPC - Kruger National Park 1-5 July 2019

Any possibilities for Coulex with stable beams?

ANPC - Kruger National Park 1-5 July 2019

First Experiment: Collectivity of low-lying states in ⁶⁶Zn Spokespersons: M. Rocchini, K. Hadynska-Klek

- Commissioning of the apparatus: Q(21+) known with high precision.
- New physics:
 - Shape of 0_2^+ ? B(E2) value unknown
 - Is the 2₂+ high-collective or not? Discrepant values for its lifetime
 - Is the 4₁+ collective or not? Discrepant values for the B(E2; 4₁+ --> 2₁+)
- ▶ Beam: ⁶⁶Zn (240 MeV, 1 1.5 pnA)
- Target: 1 mg/cm² of ²⁰⁸Pb

First Experiment: Collectivity of low-lying states in ⁶⁶Zn Spokespersons: M. Rocchini, K. Hadynska-Klek

- Coincidences between GALILEO and SPIDER
- ► 38 experimental yields
- Analysis with the GOSIA code (T. Czosnyka, D. Cline, C. Wu, Bull. Amer. Phys. Soc. 28 (1983) 745)

ANPC - Kruger National Park 1-5 July 2019

First Experiment: Collectivity of low-lying states in ⁶⁶Zn Spokespersons: M. Rocchini, K. Hadynska-Klek

validation of the setup performances: $Q_s(2_1+)=+24(9)$ [$Q_s(2_1+)=+24(8)$] efm²

ANPC - Kruger National Park 1-5 July 2019

Probing collectivity and configuration coexistence in ⁹⁴Zr Spokespersons: D. Doherty, M. Rocchini, M. Zielinska

 Recent state-of-the-art Monte Carlo shell model calculations predict shape coexistence in Zr isotopes.

Observation^{*} of a strong 2⁺₂ → 0⁺₂ transition (19 W.u.) suggests a deformed band built on 0⁺₂

* A. Chakraborty et al., PRL 110, 022504 (2013).

Probing collectivity and configuration coexistence in ⁹⁴Zr Spokespersons: D. Doherty, M. Rocchini, M. Zielinska

- Beam: ⁹⁴Zr (370 MeV, 1 1.5 pnA)
- ▶ Target: 1 mg/cm² of ²⁰⁸Pb
- Six 3"X3" LaBr₃:Ce used for the first time in COULEX @LNL

- Coincidences between
 GALILEO and SPIDER
- 75 experimental yields

ANPC - Kruger National Park 1-5 July 2019

Probing collectivity and configuration coexistence in ⁹⁴Zr Spokespersons: D. Doherty, M. Rocchini, M. Zielinska

counts

- Random-background-subtracted γ-γ coincidence spectrum gated on the 382 keV
 - * A. Chakraborty et al., PRL 110, 022504 (2013).

Sezione di Firenze

Random-background-subtracted
 Y-Y-particle coincidence spectrum
 gated on the 382 keV

ANPC - Kruger National Park 1-5 July 2019

Probing collectivity and configuration coexistence in ⁹⁴Zr Spokespersons: D. Doherty, M. Rocchini, M. Zielinska

- GOSIA analysis on-going
- new B(E2) values from single step COULEX

preliminary B(E2; 2₁⁺ → 0₁⁺) : 5.05 Wu (15 stat) (25 syst)* [NNDC: 4.9 (11) Wu)]

* M. Zielinska, Private Communication

ANPC - Kruger National Park 1-5 July 2019

PERSPECTIVE WITH SPES

SPES layout

- new RFQ
- ALPI

Cooler + HRMS) Electrostatic beam transport Charge Breeder (n+) 1/1000 mass separator

1/200 mass separator low energy experimental area

production area

PERSPECTIVE WITH SPES

ANPC - Kruger National Park 1-5 July 2019

PERSPECTIVE WITH SPES

SPES International Workshop: 47 Letter of Intents

- Ground States Properties
- Nuclear Moments
- Direct Reaction with ActiveTarget
- Direct Reaction with Si Detectors
- Multinucleon Transfer
- Coulomb Excitation
- Collective excitation
- **Fusion**
- Super Heavy
- Dynamics

SUMMARY AND OUTLOOK

- Coulomb Excitation @LNL with stable beams is on-going
- New experiments already approved (one in two weeks)
- Near future: 2nd phase GALILEO 30 GASP detectors + 10 triple cluster
- Far future: Coulex @LNL with SPES radioactive beams

THANK YOU FOR THE ATTENTION

A. N¹, M. Rocchini¹, N. Marchini^{1,2}, K. Hadyńska-Klęk³, J. J. Valiente-Dobón³, A. Goasduff^{4,5},
 D. Testov^{4,5}, D. Mengoni^{4,5}, M. Zielińska⁶, D. T. Doherty⁸, D. Bazzacco^{4,5}, G. Benzoni⁹, F. Camera¹⁰
 M. Chiari^{1,2}, M. Komorowska^{6,9}, M. Matejska-Minda⁹, B. Melon², P. Napiorkowski⁹, M. Ottanelli², A. Perego^{1,2}, L. Ramina⁵, M. Rampazzo⁵, F. Recchia^{4,5}, D. Rosso³, M. Siciliano^{3,4} and P. Sona¹

¹ INFN, Sezione di Firenze, Firenze, Italy, ² Division of Physics, School of Science and Technology, Università di Camerino, Camerino, Italy, ³ Heavy Ion Laboratory, University of Warsaw, Poland, ⁴ INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova), Italy, ⁵ INFN, Sezione di Padova, Padova, Italy, ⁶ Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Padova, Italy, ⁷ CEA Saclay, IRFU/SPhN, France, ⁸ University of Surrey, Guildford, United Kingdom, ⁹ INFN, Sezione di Milano, Milano, Italy, ¹⁰ Dipartimento di Fisica, Università degli Studi di Milano, Milano, Italy, ¹¹ Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany.

DOPPLER CORRECTION OF GAMMA SPECTRA

