

Department: Science and Technology REPUBLIC OF SOUTH AFRICA

iThemba

A new focal plane detector for the K600

R Neveling, P Adsley, T. Khumalo, P Papka, L Pellegri, FD Smit

iThemba Laboratory for Accelerator Based Sciences University of the Witwatersrand University of Zululand Stellenbosch University

Conference on Neutrino and Nuclear Physics 2020 (CNNP2020)

Nuclear structure in connection with neutrino physics Nuclear reactions as a probe for weak decays Neutrino-nucleus interaction at low and high energy

Solar models and detection of solar neutrinos

Direct and indirect dark-matter searches

Neutrino oscillations and matter effects

New related detection technologies

Anomalies in reactor neutrinos

Supernova models and detection of supernova neutrinos

Rare beta decays of nuclei for neutrino-mass measurements

Scientific topics

Nuclear double beta decays

International Advisory Committee

Clementina Agodi (INFN-LNS) Naftali Auerbach (Tel Aviv University) Faical Azaiez (iThemba LABS) Akif Baha Balantekin (University of Wisconsin-Madison) John F. Beacom (Ohio State University) Chiara Brofferio (University and INFN Milano-Bicocca) Ricardo A. Broglia (Niels Bohr Institute) Alex B. Brown (Michigan State University) Francesco Cappuzzello (University of Catania/INFN-LNS) Gianluigi De Geronimo (Stony Brook University) Hiro Ejiri (RCNP) Amand Faessler (University of Tuebingen)

Dieter Frekers (University of Muenster) Alfredo Galindo-Uribarri (Oak Ridge National Laboratory) Muhsin N. Harakeh (KVI-CART) Charles J. Horowitz (Indiana University) Francesco lachello (Yale University) Toshitaka Kajino (University of Tokyo) Karlheinz Langanke (FAIR, GSI) Horst Lenske (University of Giessen) Manfred Lindner (MPI for Nuclear Physics) Jesus R. Lubian (University Federal Fluminense) Antonio Masiero (University of Padova) Wolfgang Mittig (MSU) Witold Nazarewicz (FRIB, MSU) Takaharu Otsuka (University of Tokyo) Marco Pallavicini (University and INFN Genova) Akira Sato (Osaka University) Kate Scholberg (Duke University) Jouni Suhonen (University of Jyvaskyla) Francesco Terranova (University and INFN Milano Bicocca) Vladimir Tretyak (Kiev Institute of Nuclear Research) Francesco Vissani (GSSI/INFN-LNGS) Kai Zuber (TU Dresden)

Intersection In Local Organising Committee Faïcal Azaiez (chair – iThemba LABS)

Cape Town (South Africa)

24-28 February 2020

Clementina Agodi (INFN-LNS) Clementina Agodi (INFN-LNS) Andy Buffler (University of Catania/LNS-INFN) Lindsay Donaldson (IThemba LABS) Naomi Haasbroek (IThemba LABS) Retief Neveling (deputy-chair - IThemba LABS) Luna Pellegri (IThemba LABS/University of the Witwatersrand) Elias Sideras-Haddad (University of the Witwatersrand) Ricky Smit (IThemba LABS) Michelle Van Der Ventel-Bark (IThemba LABS) Mathis Wiedeking (IThemba LABS)

https://indico.tlabs.ac.za/event/85/ cnnp2020@tlabs.ac.za

CNNP2020

...to promote collaboration between scientists from the fields of nuclear, neutrino, astro and dark-matter physics...

24 – 28 February

Where: In the vicinity of Cape Town

See poster at conference office

Website: https://indico.tlabs.ac.za/event/85/ Email: cnnp2020@tlabs.ac.za

** Not to the level of a Q3D though

The K600: defining characteristics

The evolution of the K600

LABS

lational Research Foundation Laboratory for Accelerator Based Sciences

The evolution of the K600

Themba

_ABS

Based Sciences

lational Research Foundation Laboratory for Accelerator

K600 physics program

High resolution **giant resonance** studies e.g.

- IVGDR: (p,p') with $E_p = 200 \text{ MeV}$ at 0°, $\Delta E \sim 45 \text{ keV}$ (FWHM)
- ISGQR: (p,p') with $E_p = 200$ MeV at 7°, $\Delta E \sim 30-45$ keV (FWHM)
- ISGMR: (α , α ') with E_{α} = 200 MeV at 0°,4°, Δ E ~ 70 keV (FWHM)

Nuclear reaction mechanism studies e.g. α knockout (p,p α) studies at E_p= 100 MeV,

or proton knockout (p,2p) at 200 MeV

Searching for **cluster states, their collective excitations and particle decay** through CAKE coincidences using e.g. high resolution (p,p') at 66 MeV, (α , α ') = 200 MeV, (p,t) at 66 MeV

High resolution nuclear structure studies of nuclei for **astrophysical interest**: (p.t) at 100 MeV and 0°

PDR studies in coincidence with the BaGeL gamma detector array: (α, α') with $E_{\alpha} = 120$ MeV at 0°

K600 physics program

High resolution giant resonance studies e.g.

- IVGDR: (p,p') with $E_p = 200 \text{ MeV}$ at 0°, $\Delta E \sim 45 \text{ keV}$ (FWHM)
- ISGQR: (p,p') with $E_p = 200 \text{ MeV}$ at 7°, $\Delta E \sim 30-45 \text{ keV}$ (FWHM)
- ISGMR: (α,α') with $E_{\alpha} = 200 \text{ MeV}$ at 0°,4°, $\Delta E \sim 70 \text{ keV}$ (FWHM)

Nuclear reaction mechanism studies e.g. α knockout (p,p α) studies at E_p = 100 MeV, or proton knockout (p,2p) at 200 MeV

Searching for cluster states, their collective excitations and particle decay through CAKE coincidences using e.g. high resolution (p,p') at 66 MeV, (α,α') = 200 MeV, (p,t) at 66 MeV

Topics for research requiring new FPD

Probing the proton gap: behavior of $\pi f_{7/2}$

Probing the proton gap: behavior of $\pi f_{7/2}$

Probing the Z=28 proton gap: behavior of π f7/2 orbital

Orsay Enge split pole at 6°,9°,12°,15, 18°,21°,24° 27 MeV deuteron beam 42 keV (FWHM) resolution Angular distributions of states below 7 MeV to determine $j\pi$

E (keV)

1200

1000

800

600

400 200 ← 5/2-← 3/21. Material budget limits particles species and energies we can look at

2. For Z=1,2 particles we can go down fairly low, but we **lose energy resolution** due to **loss of tracking capability**

Why new detectors?

1. Material budget limits particles species and energies we can look at

2. For Z=1,2 particles we can go down fairly low, but we **lose energy resolution** due to **loss of tracking capability**

but also

3. Energy resolution affected by straggling due to thick Kapton window improve the energy resolution of high E (α , α ') measurements

4. Improve periodicity problems in short runs

Periodicity in position spectrum

4mm substructure sometimes seen...

But most of the times not...

Low energy detection threshold determined by material budget

MWDC MWDC Scint Scint Change to 0.1 0.08 0.06 mul olumi 0.06 YStraggling proton YStraggling triton YStraggling He3 YStraggling Li7 YStraggling C12 0.02 -30 -20-10 0 30 40 10 20

Depth [mm]

TRIM estimations

- 1. p: 43-200 MeV t: 68-200 MeV α: 170-200 MeV
- 2. p: 21- 43 MeV t: 30 - 68 MeV α: 78 - 170 MeV ⁷Li: above 165 MeV
- 3. p: above 14 MeV
 t: above 23 MeV
 α: above 57 MeV
 ⁷Li: above 110 MeV

New detector: Straggling calculations

for 50 MeV p,t,³He,⁷Li,¹²C

in 100 mbar Ar gas and 1.5 um Mylar window

Science & technology Department: Science and Technology REPUBLIC OF SOUTH AFRICA

New detectors: Proportional Drift Chambers → gas filled

- \Rightarrow operates at low pressure (~20 mbar)
- \Rightarrow entrance window: few um thick Mylar
- \Rightarrow no wires, HV plane at the top
- \Rightarrow electrons drift vertically \Rightarrow TPC-like
- \Rightarrow position determined from cathode pads

Low energy detection threshold determined by material budget

science

Department:

& technolog

Science and Technology REPUBLIC OF SOUTH AFRICA

Which new FPD system to use?

VAMOS and MAGNEX FPD systems

VAMOS and MAGNEX FPD systems

horizontal

chromatic

VAMOS:

- energy resolution $\delta E/E = 10 3$
- momentum dispersion of 2 cm/%.
 The FPD system of VAMOS, designed for
- light (A \leq 15) fast particles (~2-20 MeV/u) from direct reactions
- heavy slow particles ($\geq 2 \text{ MeV/u}$) from fusion reactions

Size: 1000mm x 100mm x 150mm Rate: less than 10kHz dX=270 micron, dY=350 micron isobutane @ 6 mbar

MAGNEX:

• momentum dispersion of 4 cm/%.

The FPD system of VAMOS, designed for ions 0.2 – 40 MeV/u

Size: 1360mm x 200mm x 96mm Rate: less than 5 kHz DX=0.6 mm, dY=0.6 mm isobutane @ 7-30 mbar

Dipole

WienFilter

Quadrupoles

1 arget

1 m

FPD induction pad shape

FPD prototype

Build fieldcage: Drift region + amplification region: $220 \times 100 \times 100$ (W x H x D)

- Anode PCB with 5x46 channels: (θ range: 34°-38° compared to Magnex: 21°-43°)
- 1.5 um entrance mylar window
- Bronkhorst pressure control system and Ar/CO2 gas mixture
- DAQ and electronics
- Initial tests: Mesytec preamplifiers, amplifiers and CAEN ADCs
- Final system still undediced (old: GASSIPLEX, new: CAEN Weeroc ASICs)
- Initial tests at Tandetron: 6 MeV p, 9 MeV 4He (2.25 MeV/u), 12 MeV 16O (0.75 MeV/u)
- Also try ThGEM and integrated pads (higher signal amplification at lowest gas pressures)

Thank you

Department: Science and Technology REPUBLIC OF SOUTH AFRICA

Existing focal plane detectors

2 MWDC + 2 scintillators (2 generations available, built 1995 and 2008)

- 2 wireplanes (vertical and 50°), sandwiched between 3x Al 20μm HV planes (16 mm separation)
- 198 (X) + 143 (U) active wires per detector (682 signal wires in total)
- \bullet 20 μm diameter Au plated W signal wires
- * 50 μm diameter Au plated W field shaping wires
- 90% Ar 10% CO_2 gas mixture

GPV: too high E at iTL

GPV: signatures found at INFN-LNS

¹²⁰Sn(p,t) at 50 MeV at $0^{\circ} \rightarrow$ GPV search

@ iThemba LABS

Search for the GPV with MAGNEX

(p,t) measurement at: E_{beam} = 35 MeV

Also see INFN-LNS study with (¹⁸O,¹⁶O) reaction @ 84 MeV

Existing focal plane: MWDC's + scintillators

aboratory for Accelerator

