Investigation of the Pygmy Dipole Resonance in atomic nuclei using photon scattering experiments

M. Müscher¹, J. Isaak², D. Savran³, R. Schwengner⁴, J. Wilhelmy¹, and A. Zilges¹

¹ Institute for Nuclear Physics, University of Cologne, Germany
² Institute for Nuclear Physics, Technische Universität Darmstadt, Germany
³ Research Division, GSI, Darmstadt, Germany
⁴HZDR, Dresden-Rossendorf, Germany

02.07.2019

African Nuclear Physics Conference 2019

Supported by the BMBF (05P18PKEN9)

muescher@ikp.uni-koeln.de

Motivation

V. Derya, Dissertation Thesis 2014, University of Cologne

Nuclear Resonance Fluorescence (NRF)

Nuclear Resonance Fluorescence (NRF)

- Level energies
- Spin quantum numbers
- Parity quantum numbers

- Level lifetimes and total decay widths
- γ -decay branching ratios Γ_f/Γ_0

Photon source: Bremsstrahlung

Photon source: Bremsstrahlung

- Mainly unpolarized, continuous photon flux
- Spin quantum number assignment

- Advantage
 - Investigation of large energy range in one experiment
 - Use of calibration standard for absolute photon flux determination

Photon source: Bremsstrahlung

- Mainly unpolarized, continuous photon flux
- Spin quantum number assignment

- Advantage
 - Investigation of large energy range in one experiment
 - Use of calibration standard for absolute photon flux determination
- Examples:
 - DHIPS (TU Darmstadt, Germany)
 - γELBE (Helmholtzzentrum Dresden-Rossendorf, Germany)

Analysis of ¹⁴²Ce – Experiment at DHIPS

¹¹B used as calibration standard

Analysis of ¹⁴²Ce – Experiment at DHIPS

Many transitions in PDR region

Photon source: Laser Compton Backscattering (LCB)

Photon source: Laser Compton Backscattering (LCB)

• Advantage

Energy

- Linearly polarized photons \rightarrow Parity quantum number assignment
- Quasi-monoenergetic $\gamma\text{-ray}$ beam \rightarrow Decay branching ratios and unresolved strength

Photon source: Laser Compton Backscattering (LCB)

• Advantage

• Linearly polarized photons \rightarrow Parity quantum number assignment

Energy

- Quasi-monoenergetic γ -ray beam \rightarrow Decay branching ratios and unresolved strength
- Examples
 - New Subaru (University of Hyogo, Japan)
 - HIγS (Duke University, USA)
 - ELI-NP (Romania)

$^{142}Ce - HI\gamma S spectra$

 $H_{\gamma}S - Photon flux calibration$

Photon flux is determined by known transitions of target nucleus from bremsstrahlung measurement

Combination of complementary experiments

205 J = 1 states and for 139 states negative parity quantum numbers were determined

Parity of two-phonon state taken from A. Gade et al., PRC 69, 054321 (2004)

$$\sigma_{\gamma\gamma} = \frac{A(total)}{N_{\rm T} \cdot W \cdot \bar{\epsilon} \cdot \int_0^\infty N_{\gamma} \, dE_{\gamma}} \quad \text{(elastic)}$$

 2_1^+ state acts as funnel \rightarrow Serves as estimation of inelastic decays

How does the **PDR evolve with increasing N/Z** ratio and **deformation**?

D. Savran *et al.*, PRC **84** (2011) 24326 ; R.-D. Herzberg *et al.*, PLB **390** (1997) 49 ; B. Löher, Dissertation Thesis, Johannes Gutenberg-Universität Mainz (2014)

How does the **PDR evolve with increasing N/Z** ratio and **deformation**?

D. Savran *et al.*, PRC **84** (2011) 24326 ; R.-D. Herzberg *et al.*, PLB **390** (1997) 49 ; B. Löher, Dissertation Thesis, Johannes Gutenberg-Universität Mainz (2014)

How does the **PDR evolve with increasing N/Z** ratio and **deformation**?

B. Löher, Dissertation Thesis, Johannes Gutenberg-Universität Mainz (2014)

How does the **PDR evolve with increasing N/Z** ratio and **deformation**?

