

Informing neutron capture via surrogate(d,pγ) measurements

Jolie A. Cizewski Rutgers Uníversíty

African Nuclear Physics Conference Kruger National Park, South Africa July 2019 Informing (n,γ) via surrogate $(d,p\gamma)$

J.A.C.⁽¹⁾, B. Manning⁽¹⁾, Andrew Ratkiewicz^(1,2), Jutta Escher⁽²⁾, Steve Pain⁽³⁾ Gregory Potel⁽⁴⁾, (1) Rutgers University
(2) Lawrence Livermore National Laboratory
(3) Oak Ridge National Laboratory
(4) Michigan State University & FRIB

and the ORRUBA, STAR-LiTeR and GODDESS collaborations

Funded in part by the U.S. Department of Energy National Nuclear Security Administration & Office of Nuclear Physics and the National Science Foundation

GERS

RUTGERS Synthesis of Z>28 elements: neutron capture

Neutron induced reactions in stars &

r-process nucleosynthesis

GERS

- Rapid neutron capture
 - Believed to take place in supernovae explosions and/or binary neutron star mergers
 - r process nucleosynthesis
 - Far from stability

RUTGERS Understanding r-process nucleosynthesis

depends on nuclear data

r-process nucleosynthesis

depends on (n,γ) rates and site of r process

RUTGERS

r-process nucleosynthesis

depends on (n,γ) rates and site of r process

ANPC July 2019

(freeze out) high entropy, hot wind

Near shell closure

neutron capture dominated by direct capture

Z=50 isotopes high entropy hot site

Mumpower, et al. PPNP 2016

TGERS

79	129	0.68
80	130	11.90
81	131	6.02
82	132	0.10
83	133	30.60
84	134	1.01
85	135	14.29

Inform by measuring neutron transfer e.g., (d,p) with n-rich RIBs

RUTGERS ¹³²Sn(d,p): N=83 single neutron states

132,130,128,126,124**Sn DSD (n,γ)**

^{132,130,128,126,124}Sn statistical (n,γ)?

Surrogate reaction concept &

Hauser-Feshbach formalism

RUTGERS Forming compound nucleus in (d,p)

$$P_{p\gamma}(E_x,\theta) = \sum_{J,\pi} F_{dp}^{CN}(E_x,J,\pi,\theta) G_{\gamma}^{CN}(E_x,J,\pi)$$

ANPC July 2019

ANPC July 2019

Surrogate (n,γ) with $(d,p\gamma)$

(d,p) reaction forms compound nucleus

- Need to measure $P(d,p\gamma)$
- Need theory to calculate F^{CN}
- * Need to deduce G^{CN} by fit to $P(d,p\gamma)$ accounting for F^{CN}

$$P_{p\gamma}(E_x,\theta) = \sum_{J,\pi} F_{dp}^{CN}(E_x,J,\pi,\theta) G_{\gamma}^{CN}(E_x,J,\pi)$$

Validate with 95 Mo(d,p γ) 96 Mo reaction $\sigma(n,\gamma)$ was measured and evaluated

Gamma-ray Emission Probability

Gamma-ray Emission Probability

Gamma-ray Emission Probability

TGERS

RUTGERS Surrogate (n,γ) validated with ⁹⁵Mo(d,p γ)

Measured P(d,p γ) Calculate how (d,p) forms compound nucleus (E_x,J, π) > Deduce G^{CN} by fit to P(d,p γ) accounting for F^{CN}

$$P_{p\gamma}(E_x,\theta) = \sum_{J,\pi} F_{dp}^{CN}(E_x,J,\pi,\theta) G_{\gamma}^{CN}(E_x,J,\pi)$$

RUTGERS Potel model for d breakup and J^{π} distributions

Rutgers

Calculating $\sigma(n,\gamma)$

$$P_{p\gamma}(E_x,\theta) = \sum_{J,\pi} F_{dp}^{CN}(E_x,J,\pi,\theta) G_{\gamma}^{CN}(E_x,J,\pi)$$
$$\sigma_{n\gamma}(E_n) = \sum_{J,\pi} \sigma_n^{CN}(E_x,J,\pi) G_{\gamma}^{CN}(E_x,J,\pi)$$

- Deduce $G^{CN}(E_x, J, \pi)$ from fit to data
- Calculate σ^{CN} w/ Koning-Delaroche optical potentials
- \geq Deduce $\sigma(n,\gamma)$ vs E_x

Good candidate for (n,γ) surrogate with beams

- Relatively good match with spin distribution in (n,γ) which is dominated by ℓ=0
- Reaction predominantly one-step transfer of j=ℓ±1/2 neutron
- "Easy" to produce CD₂ targets
- "Lower" beam energies (than heavier targets) to get above neutron separation energy
- Kinematics favors cleaner reaction

Coupling charged particle & gamma detector arrays

Measuring $(d,p\gamma)$ with radioactive beams

GODDESS: Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies

ANPC July 2019

TGERS

$(d,p\gamma)$ with radioactive beams

GODDESS: Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies

JTGERS

ANPC July 2019 Oak Ridge Rutgers University Barrel Array + endcaps

RUTGERS ¹³⁴Xe(d,pγ) with GODDESS: levels+SF

Energy vs. Angle complete range

N=80 isotone

A. Lepailleur, private communication

ANPC July 2019

RUTGERS ¹³⁴Xe(d,pγ) with GODDESS: levels+SF

Energy vs. Angle complete range

N=80 isotone

RUTGERS ¹³⁴Xe(d,pγ) with GODDESS: levels+SF

Many more nuclei can be studied Gammasphere-ORRUBA GODDESS

TGERS

$(d,p\gamma)$ with radioactive beams

GODDESS: GRETINA ORRUBA Dual Detectors for Experimental Structure Studies

Gamma-Ray Energy Tracking In-Beam Nuclear Array

RUTGERS Prepared to measure surrogate (n,γ) w/ RIBs & $(d,p\gamma)$

Goal: ≈¹³²Sn isotopes important for r process nucleosynthesis Will have to wait for FRIB

What can we do "now"?
CARIBU ²⁵²Cf fragment beams
Recently measured ¹³⁴Te(d,pγ) w/ GODDESS and GRETINA

Understanding synthesis (and destruction of ¹³⁴Te during r process (and freezeout) impacts observed Xe isotope ratios

- Could be first surrogate (n,γ) on fission fragment to constrain (n,γ) in this region
- Also approved to measure ¹⁴³Ba(d,pγ) as (n,γ) surrogate

RUTGERS Prepared to measure surrogate (n,γ) w/ RIBs & $(d,p\gamma)$

Goal: \approx^{132} Sn isotopes important for n-star mergers Will have to wait for FRIB

- What can we do "now"?
 - CARIBU ²⁵²Cf fragment beams
 - ¹³⁴Te(d,pg) and ¹⁴³Ba(d,p γ) w/ GODDESS
- NSCL ≈80 fast beams
- Approved to measure ⁸⁰Ge(d,pγ) w/ **ORRUBA+GRETINA**

ANPC July 2019

Many more nuclei can be studied GRETINA-ORRUBA GODDESS

Facility for Rare Isotope Beams (FRIB) under construction at MSU

- Understanding abundances from r process is sensitive to (n,γ) rates, especially near shell closures, e.g., ¹³⁰Sn, and weakly bound nuclei with low level density
 - Need neutron transfer (d,p) to inform direct-semi-direct capture
- Unknown competition between DSD and CN (n,γ)
 - Need validated surrogate for (n,γ)
- Demonstrated that (d,pγ) is valid surrogate for (n,γ)
- Demonstrated ability to measure (d,p) protons in coincidence with gamma rays
- Near term
 - ¹³⁴Te(d,pγ),¹⁴³Ba(d,pγ)
 - ⁸⁰Ge(d,pγ)
- Goal: FRIB (d,pγ)
 e.g., with ¹³⁰Sn beams
 ANPC July 2019

