Stellar Pyrotechnics: Nucleosynthesis in Classical Nova Explosions

Jordi José

Dept. Física, Univ. Politècnica de Catalunya (UPC), & Institut d'Estudis Espacials de Catalunya (IEEC), Barcelona Catalonia

EVOLUTION OF STARS

IMAGES NOT TO SCALE

Nucleosynthesis in Classical Nova Explosions

Type Ia (or thermonuclear) Supernovae [SN Ia]Classical Nova Outbursts [CN]

X-Ray Bursts [XRBs]: NS

Classical Novae in a Nutshell

A nova is a thermonuclear explosion driven by mass transfer onto a WD that forms a binary system. They have been observed in all wavelengths (but detected in γ -rays only at E > 100 MeV)

Moderate rise times (<1 – 2 days), $L_{Peak} \sim 10^4 - 10^5 L_{\odot}$

WD + MS (often, K-M dwarfs), WD + RG Mass ejected: $10^{-7} - 10^{-4} M_{\odot}$ (~10³ km s⁻¹) Recurrence: ~ 1 - 100 yr (RNe) – 10⁵ yr (CNe) Frequency: 30 ± 10 yr⁻¹ [Obs. ~ 10 yr⁻¹]

Primordial Novae: Nova-like, stellar explosions on white dwarfs evolved in a cataclysmic primordial binary ($Z_{ZAMS} \sim 0$)

J. José

JJ, García-Berro, Hernanz, & Gil-Pons, ApJL (2007)

γ-Ray Emission from Classical Novae

Isotope	Lifetime	Disintegration	Nova type		
¹⁷ F	93 sec	β ⁺ -decay	CO & ONe		
¹⁴ O	102 sec	β^+ -decay	CO & ONe		
¹⁵ O	176 sec	β ⁺ -decay	CO & ONe		
¹³ N	862 sec	β^+ -decay	CO & ONe		
¹⁸ F	158 min	β^+ -decay	CO & ONe		
⁷ Be	77 day	e-capture	СО		
²² Na	3.75 yr	β^+ -decay	ONe		
²⁶ Al	1.0 Myr	β^+ -decay	ONe		

* ^{14,15}O, ¹⁷F (¹³N): Expansion and ejection stages
* ¹³N, ¹⁸F: Early gamma-ray emission (511 keV plus continuum)
* ⁷Be, ²²Na, ²⁶Al: Gamma-ray lines

* γ -ray signature: ¹⁸F decay ($T_{1/2} \sim 110 \text{ min}$) provides a source of gamma-ray emission at 511 keV and below (related to electronpositron annihilation). 511 keV But! **Uncertainties** in the rates 10⁻³ 6 h translate into a factor $\sim 5 - 10$ 10^{-4} 10⁻⁵ 10⁻⁵ 10⁻⁵ 10⁻⁶ 10⁻⁷ 12 h uncertainty in the expected fluxes! 1.15 M_o CO 10⁻⁵ 24 h 478 keV 10⁻⁸ 48 h 170 keV feature Gómez-Gomar, Hernanz, JJ, & 0.1 1.0 Isern (1998), MNRAS D=1 kpcE[MeV]

J. José

 γ -ray signature: **Peak fluxes** for the **478 keV** γ -ray line * (transition: ⁷Be to ⁷Li) might be detectable by gamma-ray satellites (i.e. INTEGRAL) at very short distances (i.e., <0.2 kpc)

J. José

Gómez-Gomar, Hernanz, JJ, & Isern (1998), MNRAS

A Observational evidence of ⁷Li production in novae

* Li I doublet at 6708 A in the spectra of V382 Vel (Nova Velorum 1999) (Della Valle et al. 2002) and V1369 Cen (Nova Centauri 2013) (Izzo et al. 2015)

J. José

 \rightarrow but hard to disentangle from other features, like the doublet associated with N I (Shore et al. 2003)

* Blueshifted ⁷Be II (doublet at 3130 A) absorption lines in V339 Del (Nova Delphini 2013), V5668 Sgr (Nova Sagittarii 2015 #2), V2944
Oph (Nova Ophiuchi 2015) (Tajitsu et al. 2015, 2016; Molaro et al. 2016), and V407 Lup (Nova Lupi 2016) (Izzo et al. 2018)

A&A 615, A107 (2018) https://doi.org/10.1051/0004-6361/201732514 © ESO 2018

Astronomy Astrophysics

J. José

Gamma-ray observations of Nova Sgr 2015 No. 2 with INTEGRAL

Thomas Siegert^{1,2}, Alain Coc³, Laura Delgado^{4,5}, Roland Diehl^{1,2}, Jochen Greiner¹, Margarita Hernanz^{4,5}, Pierre Jean⁶, Jordi José^{7,5}, Paolo Molaro⁸, Moritz M. M. Pleintinger¹, Volodymyr Savchenko⁹, Sumner Starrfield¹⁰, Vincent Tatischeff³, and Christoph Weinberger¹

No significant excess for the 478 keV, the 511 keV, or the 1275 keV lines found

$M(^{7}Be) < 4.8 \times 10^{-9} \text{ d}(\text{kpc})^{2} \text{ M}_{\odot}$ $M(^{22}Na) < 2.4 \times 10^{-8} \text{ d}(\text{kpc})^{2} \text{ M}_{\odot}$

d ~ 1.6 kpc (Banerjee et al. 2016)

Novae: Nuclear Uncertainties

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 142:105–137, 2002 September © 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE EFFECTS OF THERMONUCLEAR REACTION-RATE VARIATIONS ON NOVA NUCLEOSYNTHESIS: A SENSITIVITY STUDY

CHRISTIAN ILIADIS AND ART CHAMPAGNE

Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255; and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308; iliadis@unc.edu, aec@tunl.duke.edu

Jordi José

Departament de Física i Enginyeria Nuclear (UPC), Avinguda Víctor Balaguer, s/n, E-08800 Vilanova i la Geltrú, Barcelona, Spain; and Institut d'Estudis Espacials de Catalunya, Edifici Nexus-201, Calle Gran Capitá 2-4, E-08034 Barcelona, Spain; jjose@ieec.fcr.es

SUMNER STARRFIELD Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504; sumner.starrfield@asu.edu

AND

PAUL TUPPER Scientific Computing–Computational Mathematics Program, Stanford University, Stanford, CA 94305; tupper@sccm.stanford.edu Received 2002 January 19; accepted 2002 April 25

 \approx 7350 nuclear reaction network calculations

Main nuclear uncertainties: $[{}^{18}F(p,\alpha){}^{15}O, {}^{25}Al(p,\gamma){}^{26}Si, {}^{30}P(p,\gamma){}^{31}S]$

$^{18}\mathrm{F}(\mathrm{p},\alpha)$

THE ASTROPHYSICAL JOURNAL, 846:65 (6pp), 2017 September 1 © 2017. The American Astronomical Society. All rights reserved.

https://doi.org/10.3847/1538-4357/aa845f

From Coc & de Séréville

(June 2017)

rs,^{2,4}

A Trojan Horse Approach to the Production of ¹⁸F in Novae

VAMOS

M. La Cognata¹^(b), R. G. Pizzone¹, J. José^{2,3}^(b), M. Hernanz^{3,4}^(b), S. Cherubini^{1,5}, M. Gulino^{1,6}, G. G. Rapisarda^{1,5}, and C. Spitaleri^{1,5}

PHYSICAL REVIEW C 96, 055806 (2017)

Spectroscopic study of ²⁰Ne + *p* reactions using the JENSA gas-jet target to constrain the astrophysical ¹⁸F(p,α)¹⁵O rate

Eur. Phys. J. A (2019) **55**: 4 DOI 10.1140/epja/i2019-12682-9

The European Physical Journal A

Letter

Α.

Ma

Ma

Still diff

s-wave resonances for the ${}^{18}F(p,\alpha){}^{15}O$ reaction in novae

D. Kahl^{1,a}, P.J. Woods¹, Y. Fujita^{2,3}, H. Fujita^{2,3}, K. Abe⁴, T. Adachi², D. Frekers⁵, T. Ito⁴, N. Kikukawa⁴, M. Nagashima⁴, P. Puppe⁵, D. Sera⁴, T. Shima², Y. Shimbara⁴, A. Tamii², and J.H. Thies⁵

¹ School of Physics & Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK

² Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan

³ Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

⁴ Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata 950-2181, Japan

 5 Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany

$^{30}P(p,\gamma)$

explosions

A. Kankainen^{a,*,1}, P.J. Woods^a, H. Schatz^{b,c,d}, T. Poxon-Pearson^{b,c,d}, D.T. Doherty^{a,2}, V. Bader^{b,c}, T. Baugher^{b,3}, D. Bazin^b, B.A. Brown^{b,c,d}, J. Browne^{b,c,d}, A. Estrade^{a,4}, A. Gade^{b,c}, J. José^{e,f}, A. Kontos^b, C. Langer^{b,5}, G. Lotay^{a,2}, Z. Meisel^{b,c,d,6}, F. Montes^{b,d}, S. Noji^b, F. Nunes^{b,c,d}, G. Perdikakis^{d,g}, J. Pereira^{b,d}, F. Recchia^{b,7}, T. Redpath^g, R. Stroberg^{b,c}, M. Scott^{b,c}, D. Seweryniak^h, J. Stevens^{b,d}, D. Weisshaar^b, K. Wimmer^{g,8}, R. Zegers^{b,c,d}

$^{25}\mathrm{Al}(\mathbf{p},\gamma)$

PHYSICAL REVIEW C 92, 035808 (2015)

Structure of resonances in the Gamow burning window for the ${}^{25}Al(p,\gamma){}^{26}Si$ reaction in novae

D. T. Doherty,^{1,2} P. J. Woods,¹ D. Seweryniak,³ M. Albers,^{3,*} A. D. Ayangeakaa,³ M. P. Carpenter,³ C. J. Chiara,^{3,4,†} H. M. David,³ J. L. Harker,^{3,4} R. V. F. Janssens,³ A. Kankainen,¹ C. Lederer,¹ and S. Zhu³
¹School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
²CEA, Centre de Saclay, IRFU/Service de Physique Nucléaire, F-91191 Gif-sur-Yvette, France
³Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
⁴Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA (Received 8 July 2015; published 17 September 2015)

Observational Constraints

J. José

In situ observations (highly risky...)

4	PW Vul 1984								
		Η	He	С	Ν	Ο	Ne	Na-Fe	Z
Obser	vation	0.47	0.23	0.073	0.14	0.083	0.0040	0.0048	0.30
Theor	y	0.47	0.25	0.073	0.094	0.10	0.0036	0.0037	0.28
(JJ & Hernanz 1998)									

Nucleosynthesis in Classical Nova Explosions Main Nuclear Path || Gamma Rays || Uncertainties || Observational Constraints || 12321 Models

THE ASTROPHYSICAL JOURNAL, 551:1065–1072, 2001 April 20 © 2001. The American Astronomical Society. All rights reserved. Printed in U.S.A.

PRESOLAR GRAINS FROM NOVAE

SACHIKO AMARI, XIA GAO,¹ LARRY R. NITTLER,² AND ERNST ZINNER Laboratory for Space Sciences and the Physics Department, Washington University, St. Louis, MO 63130-4899; sa@howdy.wustl.edu, ekz@howdy.wustl.edu

 $\label{eq:construction} JORDI \ JOSÉ^3 \ \mbox{and} \ \ Margarita \ \ Hernanz \\ Institut d'Estudis Espacials de Catalunya (IEEC/CSIC), E-08034 \ Barcelona, Spain; jjose@ieec.fcr.es, hernanz@ieec.fcr.es \\ \end{tabular}$

AND

ROY S. LEWIS Enrico Fermi Institute, University of Chicago, Chicago, IL 60637-1433; r-lewis@uchicago.edu Received 2000 September 15; accepted 2000 December 18

Presolar Grains

J. José

Recent updates on **putative nova grains: identification of 18 presolar nova candidates among the inventory of grains**

THE ASTROPHYSICAL JOURNAL, 855:76 (14pp), 2018 March 10 © 2018. The American Astronomical Society. All rights reserved.

https://doi.org/10.3847/1538-4357/aaabb6

On Presolar Stardust Grains from CO Classical Novae

Christian Iliadis^{1,2}, Lori N. Downen^{1,2}, Jordi José^{3,4}, Larry R. Nittler⁵, and Sumner Starrfield⁶ ¹Department of Physics & Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255, USA; iliadis@unc.edu ²Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308, USA ³Departament de Física, EEBE, Universitat Politècnica de Catalunya, c/Eduard Maristany 10, E-08930 Barcelona, Spain ⁴Institut d'Estudis Espacials de Catalunya, c/Gran Capità 2-4, Ed. Nexus-201, E-08034 Barcelona, Spain ⁵Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015, USA ⁶Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404, USA *Received 2017 December 15; revised 2018 January 26; accepted 2018 January 28; published 2018 March 9*

Laboratory evidence for co-condensed oxygen- and carbon-rich meteoritic stardust from nova outbursts

Pierre Haenecour¹^{*}, Jane Y. Howe^{2,9}, Thomas J. Zega^{1,3}, Sachiko Amari^{4,5}, Katharina Lodders^{5,6}, Jordi José⁷, Kazutoshi Kaji⁸, Takeshi Sunaoshi² and Atsushi Muto²

April 2019

"12321" Models

1D (Spherically Symmetric) Models have been successful in reproducing the *gross* observational features that characterize Classical Nova outbursts (e.g., light curves, nucleosynthesis...)

J. José

But the assumption of spherical symmetry excludes an entire sequence of events, such as the way a **TNR initiates** (point-like ignition) and **propagates**

J. José

Ex. The long-term evolution of a classical nova requires to address the **interaction** between the **nova ejecta**, the **disk** and the **stellar** companion

A&A 613, A8 (2018) https://doi.org/10.1051/0004-6361/201731545 © ESO 2018 Astronomy Astrophysics

Three-dimensional simulations of the interaction between the nova ejecta, accretion disk, and companion star*

Joana Figueira^{1,2}, Jordi José^{1,2}, Enrique García-Berro^{2,3}, Simon W. Campbell^{4,5,6}, Domingo García-Senz^{1,2}, and Shazrene Mohamed^{7,8,9}

YZ Plane Nucleosynthesis in Classical Nova Explosions Main Nuclear Path || Gamma Rays || Uncertainties || Observational Constrains || 12321 Models

Interest of **multiD models:** to improve state-of-the-art, 1-D models with large nuclear reaction networks

a) "123" (or 1 to 3) Models: 1D simulation of accretion and early stages of the TNR \rightarrow mapping onto a 3D domain

J. José

b) "convection-in-a-box/cube" studies: multiD simulations

Multidimensional Models @ UPC Barcelona

2D Simulations

A&A 513, L5 (2010) DOI: 10.1051/0004-6361/201014178 © ESO 2010

Letter to the Editor

On mixing at the core-envelope interface during classical nova outbursts

J. Casanova¹, J. José¹, E. García-Berro², A. Calder³, and S. N. Shore⁴

A&A 527, A5 (2011) DOI: 10.1051/0004-6361/201015895 © ESO 2011 Astronomy Astrophysics

Astronomy

Astrophysics

J. José

Mixing in classical novae: a 2-D sensitivity study*

J. Casanova^{1,2}, J. José^{1,2}, E. García-Berro^{3,2}, A. Calder⁴, and S. N. Shore⁵

Nucleosynthesis in Classical Nova Explosions

Main Nuclear Path || Gamma Rays || Uncertainties || Observational Constrains || 12321 Models

Results are **independent** of the specific choice of the **initial perturbation** (duration, strength, location, and size), **the resolution adopted**, or the **size of the computational domain**

J. José

doi:10.1038/nature10520

J. José

Kelvin–Helmholtz instabilities as the source of inhomogeneous mixing in nova explosions

Jordi Casanova^{1,2}, Jordi José^{1,2}, Enrique García-Berro^{3,2}, Steven N. Shore⁴ & Alan C. Calder⁵

LETTER

490 | NATURE | VOL 478 | 27 OCTOBER 2011

Kelvin-Helmholtz instabilities

Casanova, JJ, García-Berro, Shore & Calder (2011), Nature

MareNostrum II (BSC, 2006), 94.21 Tflops/s, 10,240 cores

MareNostrum III (BSC, Jan. 2013), >1 Petaflop/s, 48,000 cores

MareNostrum IV (BSC, Jun. 2017), >11 Petaflop/s, 165,888 cores

J. José

A&A 619, A121 (2018) https://doi.org/10.1051/0004-6361/201833422 © ESO 2018

Astronomy Astrophysics

Two-dimensional simulations of mixing in classical novae: The effect of white dwarf composition and mass*

Jordi Casanova¹, Jordi José^{2,3}, and Steven N. Shore⁴

¹ Physics Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6354, USA e-mail: novaj@ornl.gov

² Departament de Física, EEBE, Universitat Politècnica de Catalunya, c/Eduard Maristany 10, 08930 Barcelona, Spain

³ Institut d'Estudis Espacials de Catalunya, c/Gran Capità 2-4, Ed. Nexus-201, 08034 Barcelona, Spain

⁴ Dipartimento di Física "Enrico Fermi", Università di Pisa and INFN, Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy

c) "321" (or 3 to 1) Models: prescriptions of 3D turbulent convection $(v_{conv}(t), m_{dredge-up}(t), ...)$ are implemented in 1D simulations to follow the final stages of a nova (expansion and ejection)

J. José

Main Collaborators

S. Amari (WUST St. Louis)
J. Casanova (IEEC Barcelona)
A. Coc (CSNSM-IN2P3 Orsay)
P. Haenecour (U Arizona, Tucson)
M. Hernanz (ICE Bellaterra)
C. Iliadis (UNC Chapel Hill)
S. Shore (U Pisa)

hank you for your attention

Stellar Pyrotechnics: Nucleosynthesis in Classical Nova Explosions African Nuclear Physics Conference, Kruger National Park (South Africa), July 1-5, 2019