Recent developments at Isotope Separator On Line based facilities

Piet Van Duppen KU Leuven, Belgium

- Introductory remarks on RIB research
- Target materials
- Laser Ion Sources and Ion Manipulation
- Gas-cell based approach: IGLIS
- Isomeric beams
- Conclusion and outlook

2 Y. Blumenfeld, T. Nilsson T. and PVD, Physica Scripta T152 (2013) 014023

Experimental ISOL-based RIB research

Target material used at ISOLDE (since 2000)

Nano - target materials

- Nano-Crystalline Uranium Carbide and Titanium Carbide
- mixing with multi-walled carbon nanotubes (MWCN)

A. Gottberg,- NIMB 376 (2016) 8; J. Ramos NIMB (2019)

Resonance Laser Ionization

 Developments in the resonance laser ion source (> 50% beam time at ISOLDE)

ISOLDE, JYFL, SPES, TRIUMF, GANIL, ALTO, RIKEN,...

• VADLIS — RILIS inside a FEBIAD ion source

Versatile Arc Discharge Ion Source (VADIS)

• Multi-Reflection Time of Flight:

mass measurements – beam purification – beam diagnostics

ISOLDE, GSI, JYFL, GANIL, TRIUMF, MSU, RIKEN, ...

10 V. Manea ISOLTRAP; R. N. Wolf,- NIMA 686 (2012) 82

 Laser ionization spectroscopy of neutron-deficient mercury isotopes using VADLIS and MR-TOF

- Monte-Carlo Shell Model calculation (T. Otsuka)
 - ¹³²Sn core
 - $\pi: 1g_{7/2} \rightarrow 1i_{13/2}$ (11 proton orbitals)
 - v: $1h_{9/2} \rightarrow 1j_{15/2}$ (13 neutron orbitals)

• High Selectivity RILIS — Laser Ion Source Trap (LIST)

• Inaccessible or problematic elements for ISOLDE RILIS

57 La	°Ce	⁵⁹ Pr	⁰Nd	Pm	ŝm	^ه Eu	Ğd	°Σb	[®] Dy ₂	Ho	[®] Er	m	⁷⁰ Yb	Lu
Ac	ĩn	Pa	່ "ບ	Np	Pu >1	Åm	Ĉm	"Bk	°Cf	°Es	"Fm	Md	No	103 Lr

- Mo(CO)₆ (Molybdenum hexacarbonyl) Molecular breakup + ionization
 - 1) Creation and transport of volatile molecules of refractory metals
 - 2) Dissociation by laser pulse
 - 3) Resonance ionisation before atom/wall collision

• In Gas Laser Ionization and Spectroscopy (IGLIS) @ S3 (GANIL), GSI (see talk M. Block), MARA (JYFL), RIKEN

IGLIS @ S3

- > High intensity heavy-ion LINAC: >10 $p\mu A$
- Super Separator Spectrometer (S3)
- N=Z nuclei (towards ¹⁰⁰Sn) and heavy and Super Heavy Elements

Production/study of Isomeric Beams – the Spin Degree of Freedom

• Use the hyperfine structure to produce isomeric beams (for decay studies, mass measurements and Coulomb excitation/transfer reactions after post-acceleration)

Production/study of Isomeric Beams – the Spin Degree of Freedom

- Use the hyperfine structure to produce isomeric beams (for decay studies, mass measurements and Coulomb excitation/transfer reactions after post-acceleration)
- Limited by the Doppler broadening and the hyperfine structure

Conclusion and Outlook

- Substantial progress in ISOL-based facilities leading to new, more intense RIB with increased purity and improved ion beam properties
 - Target materials
 - Laser ionization
 - Ion manipulation / charge breeding
 - Gas-cell based systems
 - Post acceleration
- Strong cross fertilization between target-ion source developments and developments in instrumentation (e.g. lasers, ion manipulation, MR-TOF,...)
- Crucial next steps:
 - further optimization of efficiency/selectivity
 - developments to cope with the higher primary beam intensities

<u>Thanks to:</u> Bruce Marsh, Fredrik Wenander, Thierry Stora, Pierre Delahaye, Alex Gottberg

see talk Wednesday : R. Bark – South African Isotope Facility