First Spectroscopy of ⁴⁰Mg

Heather L. Crawford

Nuclear Science Division Lawrence Berkeley National Laboratory

Overview

• Neutron-rich Mg Isotopes

- The "Peninsula" of deformation along Z=12
- \circ Evolution of shape along the N=28 isotones
- Toward the dripline: ⁴⁰Mg
 - Current status
- Spectroscopy in ⁴⁰Mg at RIBF
 - Results
 - o Comparison to theory

Overview

• Neutron-rich Mg Isotopes

- The "Peninsula" of deformation along Z=12
- \circ Evolution of shape along the N=28 isotones
- Toward the dripline: ⁴⁰Mg
 - Current status
- Spectroscopy in ⁴⁰Mg at RIBF
 - o Results
 - Comparison to theory

N=20 Island of Inversion

ENERG

Science

i/i

BERKELEY LAB

Z=12 'Peninsula' of Inversion

Office of

Science

Ż

BERKELEY LAB

Z=12 'Peninsula' of Inversion

N=28: Evolution of Nuclear Shapes

Energy Levels in a Woods Saxon Potential

- ⇒ In a well bound nucleus
 - steady evolution of energy levels in a 1 body potential
 - modified by 2-body NN interaction $(\sigma.\tau, \text{Tensor})$

Figure 2-30 Energies of neutron orbits calculated by C. J. Veje (private communication).

A.Bohr and B.R. Mottelson, vol. 1

Energy Levels in a Woods Saxon Potential

- ⇒ In a well bound nucleus
 - steady evolution of energy levels in a 1 body potential
 - modified by 2-body NN interaction (σ.τ, Tensor)
- ⇒ A second distinct effect is due to weakly bound levels
 - low I levels (s, p) → extended wavefunctions ("halos")
 - valence nucleons can become decoupled from the core
 - coupling to continuum states

Figure 2-30 Energies of neutron orbits calculated by C. J. Veje (private communication).

A.Bohr and B.R. Mottelson, vol. 1

Limits of Stability: Halo Nuclei

Office of

Science

ENERG

 \mathbf{V}

BERKELEY LAB

Weak binding phenomena

- Currently we know of examples of weak binding and delocalized wavefunctions giving rise to nuclear halos
- What about spectroscopic observables ?
 - transition energies, rates ...

- When we do have halo structures then what is the nature of the valance-core interaction?
 - Do the delocalized, weakly bound nucleons
 - <u>decouple from the core</u> and/or
 - <u>couple to the continuum</u>?

Office of

Science

Data on excited states (γ decay) can help answer these questions...

⁴⁰Mg: The Intersection Point

Mapping the Dripline in the sd Shell

Previously ..

Beam intensities at RIBF today allow spectroscopy in ⁴⁰Mg.

2010: Nucleon Knockout at RIBF

December 2010 - Sunday Campaign (NP1312-RIBF03)

⁴²Si produced at a rate of 25 pps/100 pnA following fragmentation of a high-intensity ⁴⁸Ca primary beam at RIBF in RIKEN

2p Knockout: ${}^{42}Si \Rightarrow {}^{40}Mg$

- Approximately 10 hours of beam-on-target
- 5 events of ⁴⁰Mg observed -- measured inclusive $\sigma_{(-2p)}$ of 40(18) µb

⁴⁰Mg: Where we left it in 2014

Based on the inclusive cross-section from ⁴²Si(-2p):

- ⁴⁰Mg likely only has one bound 0⁺ state (the ground state)
- The ground state deformation is likely opposite in sign to that of ⁴²Si

Open questions:

- Are there any bound excited states? $(S_n = 1.997(716) \text{ MeV})$
- Is E(2+) in line with expectations from shell-model?
- Is the ground state consistent with prolate deformation?
- Is there evidence for weak-binding effects in the spectrum of ⁴⁰Mg?

Overview

- Neutron-rich Mg Isotopes
 - The "Peninsula" of deformation along Z=12
 - Evolution of shape along the N=28 isotones
- Toward the dripline: ⁴⁰Mg
 - Current status
- Spectroscopy in ⁴⁰Mg at RIBF
 - Results
 - Comparison to theory

December 2016 at RIBF – NP1312-RIBF03R2

⁴¹Al produced following fragmentation of a high-intensity ⁴⁸Ca primary beam at RIBF in RIKEN

December 2016 at RIBF – NP1312-RIBF03R2

Self-supporting Carbon (graphite) and CH₂ targets CH₂ \Rightarrow 3.82 g/cm²; Carbon \Rightarrow 3.80 g/cm²

Incoming Beam in BigRIPS

- BigRIPS fragment separator was centered on ⁴¹Al
- ~3% of incoming beam was ⁴¹Al; ⁴²Si and ⁴⁰Mg were both in acceptance of BigRIPS
 - Average ⁴⁸Ca primary beam intensity of order 400 pnA

ZeroDegree PID and Cross-Sections

Cross-section analysis – relative to ⁴²Si(-2p)

- Inclusive cross-section for ⁴¹Al(-1p) is ~ $30 \times \sigma_{42Si-2p} \Rightarrow ~1.2 \text{ mb}$
- Cross-section from SDPF-MU for states below 0^+_2 for ⁴¹Al(-1p) = 2.45 mb (without suppression factor); 0.74 mb with suppression

P. Doornenbal et al., PRL **111**, 212502 (2013).

P. Doornenbal et al., PRL **111**, 212502 (2013).

- 500 keV transition assigned to $2_1^+ \rightarrow 0_1^+$
- 650 keV transition ? $2_2^+ \rightarrow 2_1^+ \quad 0_2^+ \rightarrow 2_1^+ \quad 4_1^+ \rightarrow 2_1^+ \quad + \dots$
- No scenario fits with existing expectations (systematics) nor predictions from calculation
- Breakdown of systematics and theory predictions suggests something new is happening at the dripline

- No scenario fits with existing expectations (systematics) nor predictions from calculation
- Breakdown of systematics and theory predictions suggests something new is happening at the dripline

Open questions:

- Are there any bound excited states? ($S_n = 1.997(716)$ MeV)
- Is E(2⁺) in line with expectations from shell-model?
- Is the ground state consistent with prolate deformation?
- Is there evidence for weak-binding effects in the spectrum of ⁴⁰Mg?

Weakly bound neutrons in ⁴⁰Mg

- 2-body NN interaction ($\sigma.\tau$, Tensor) works to modify the N=28 shell gap
- Occupation of low I levels (p_{3/2}) leads to extended wavefunctions ("halos")

Office of

Science

U.S. DEPARTMENT OF

- Consider ⁴⁰Mg as a deformed ³⁸Mg core and a 2-neutron p-wave halo
- How do the halo neutrons interact with the core in ⁴⁰Mg?

Coupling of valence (halo) neutrons to the core

- ¹¹Li "strong" coupling ⁹Li core surface is "soft" towards surface vibrations
- ⁶He "weak" coupling ⁴He core surface is "hard"

- The way the halo couples to the core will affect the low-lying spectrum
- Propose that observed ⁴⁰Mg spectrum to arise from weakly coupled "halo"

Weak coupling of two degree of Freedom

Science

Ż

BERKELEY LAB

Weak coupling of two degree of Freedom

Rotation and Alignment

Rotation in ⁴⁰Mg – "decoupled valence pair"

In ⁴⁰Mg, the energy to break pair is reduced ("diagonal pair" matrix element only)

- A successful spectroscopic measurement of ⁴⁰Mg has been made at RIBF using the ⁴¹Al(-1p) knockout reaction
- At least two excited bound states exists in ⁴⁰Mg, experimentally confirming a binding energy above ~500 keV
- Observed excitation energy spectrum in ⁴⁰Mg is outside expectations from systematics and theoretical predictions
- Possible evidence of weak-binding effects?

Acknowledgements

PHYSICAL REVIEW LETTERS 122, 052501 (2019)

Editors' Suggestion

First Spectroscopy of the Near Drip-line Nucleus ⁴⁰Mg

H. L. Crawford,^{1,*} P. Fallon,¹ A. O. Macchiavelli,¹ P. Doornenbal,² N. Aoi,³ F. Browne,² C. M. Campbell,¹ S. Chen,² R. M. Clark,¹ M. L. Cortés,² M. Cromaz,¹ E. Ideguchi,³ M. D. Jones,^{1,†} R. Kanungo,^{4,5} M. MacCormick,⁶ S. Momiyama,⁷ I. Murray,⁶ M. Niikura,⁷ S. Paschalis,⁸ M. Petri,⁸ H. Sakurai,^{2,7} M. Salathe,¹ P. Schrock,⁹ D. Steppenbeck,⁹ S. Takeuchi,^{2,10} Y. K. Tanaka,¹¹

R. Taniuchi,⁷ H. Wang,² and K. Wimmer⁷

Back up Slides

σ Ratios to Constrain "Shape" Amplitudes

Force et al., Phys. Rev. Lett. 105, 102501 (2010).

Where are we now?

Open questions:

Are there any bound excited states? MeV)

Science

- Is $E(2^+)$ in line with expectations from shell-model?
- Is the ground state consistent with prolate deformation?
- Is there evidence for weak-binding effects in the spectrum of ⁴⁰Mg?

 $(S_n = 1.997(716))$

Where are we now?

Open questions:

Are there any bound excited states? MeV)

Office of

Science

C

- Is $E(2^+)$ in line with expectations from shell-model?
- Is the ground state consistent with prolate deformation?
- Is there evidence for weak-binding effects in the spectrum of ⁴⁰Mg?

1/2 $\langle r_m^2 \rangle^{1/2} = \left(\frac{M}{M+m}\right)$ $\langle r_{
m c}^2
angle$ + 2 -Weak Binding Solution 1.9)(⁴⁰Mg)/J(³⁸Mg) 1.8 \mathcal{I}_{rigid} Experiment 1.7 Migdal Scaling 1.6 1.5 1.4 1.3 1.2 1.1 1 2 З 5 0 4 Binding Energy [MeV]

 $(S_n = 1.997(716))$

Introduce dependence

on BE

Shell Model + Eikonal Reaction Theory: ⁴²Si - 2p

Brown and Tostevin

State	$\begin{array}{c} Energy \\ (MeV) \end{array}$	$\sigma_{theor} \ (\mu b)$	$\begin{array}{c} R_s(2N) \times \sigma_{theor} \\ (\mu b) \end{array}$	$\sigma_{exp} \ (\mu b)$
0^{+}	0	102	51	_
2^{+}_{1}	0.732	31	16	—
0^{+}_{2}	1.683	156	78	—
4_{1}^{+}	1.995 (unbound)	3	2	—
Inclusive	_	289	145	40(18)

- Experimental cross-section is suppressed compared to predictions using the SDPF-MU shell-model effective interaction and eikonal reaction theory.
- Cross-section is consistent with ONLY ONE bound 0⁺ state (calculated s = $67\mu b$) (2012 Atomic Mass Evaluation Sn = 1.74(79))
- Magnitude of the experimental ⁴²Si-2p knockout cross-section provides information regarding the number of bound states in ⁴⁰Mg. It is not possible to use the magnitude alone to discriminate between possible configurations for the ⁴⁰Mg(0⁺) ground state

N = 28 Coexisting Shapes

Calculations and data indicate that the low-energy structure in ⁴⁴S, ⁴²Si, and ⁴⁰Mg is dominated by two major, coexisting configurations:

Spherical and Prolate in ⁴⁴S, Oblate and Prolate in ⁴²Si and ⁴⁰Mg.

Office of

Science

C

This suggests that a two-state(shape) mixing model can provide a description of their structure

$$44S \quad |^{44}S, 0^{+}_{1}\rangle = 0.35 |0^{+}; S\rangle + 0.94 |0^{+}; P\rangle$$

Force et al., Phys. Rev. Lett. 105, 102501 (2010).
$$|^{42}Si, 0^{+}_{1}\rangle = +\alpha |0^{+}; O\rangle + \beta |0^{+}; P\rangle$$

$$|^{42}Si, 0^{+}_{2}\rangle = -\beta |0^{+}; O\rangle + \alpha |0^{+}; P\rangle$$

$$\mathcal{R} = \frac{[\sigma_{42}(0^+_1) + \sigma_{42}(0^+_2)]}{[\sigma_{42}(0^+_1) + \sigma_{42}(0^+_2)]} = +\gamma |0^+; O\rangle + \delta |0^+; P\rangle$$

σ Ratios to Constrain "Shape" Amplitudes

Cross-section ratio \mathcal{R} plotted as a function of the prolate component (probability) in the ⁴²Si (α^2) and ⁴⁰Mg (β^2) ground-state wave functions.

$$|^{42}\text{Si},0^+_1\rangle = +\alpha |0^+;O\rangle + \beta |0^+;P\rangle$$

$$|^{42}\mathrm{Si},0^+_2\rangle = -\beta |0^+;\mathrm{O}\rangle + \alpha |0^+;\mathrm{P}\rangle$$

$$|^{40}Mg, 0^+_1\rangle = +\gamma |0^+; O\rangle + \delta |0^+; P\rangle$$

Experimental value

$$\mathcal{R} = 3.3^{+2.4}_{-1.6}$$

Dominant deformations in the ⁴²Si and ⁴⁰Mg ground states are consistently opposite.

Crawford et al., Phys. Rev. C 89, 041303(R) (2014).

