ANPC Conference, July 2019

Bundesministerium für Bildung und Forschung

Laser Spectroscopy Studies of Superheavy Elements

Michael Block GSI Darmstadt Helmholtzinstitut Mainz Institut für Kernchemie der Universität Mainz

Helmholtz Institute Mainz

HELMHOLTZ

- Introduction
- Atomic and nuclear properties revealed by laser spectroscopy
- Results of the pioneering campaigns at GSI
- Recent results of the laser spectroscopy beamtime 2019
- Summary and Conclusions

RADRIS Collaboration

Superheavy Elements (SHE)

- What is the heaviest element that can exist?
- What are SHE's atomic, chemical and nuclear properties?

Discovered at GSI

⁵	⁵⁸ Ce	⁵⁰Pr	Nd	Pm	ŝźm	⁶³ Eu	⁶⁴ Gd	⁵₅b	⁶⁶ Dy	Ho	⁶⁸ Er	۳m	Yb	Lu
Åc	⁹⁰ Th	Pa	⁹² U	⁹³ Np	P4 Pu	⁹⁵ Am	⁹⁶ 05. Cm	Bk	°°Cf	⁹⁹ Es	Fm	¹⁰¹ Md	No	Lr

United Nations Educational, Scientific and Cultural Organization Onbians Censor commences Construction Const

HELMHOLTZ Helmholtz-Institut Mainz

Superheavy Element Research – Status

Superheavy Elements: Main Topics at GSI

• Production of "single-atom-only" elements with atomic number Z \geq 100:

nuclear reaction studies (element search on hold)

Nuclear properties of heaviest elements

Decay spectroscopy

High-precision mass measurements

Laser spectroscopy (hyperfine structure)

Atomic properties of heaviest elements

Laser spectroscopy of atomic levels

• Chemical properties

Chemical reactions, surface interactions

Comprehensive approach to the study of the heaviest elements

Laser Spectroscopy of the Heaviest Elements

Laser Spectroscopy - Current Status

Resonant Laser Ionization – Excitation Schemes

Radiation Detected Resonance Ionization Spectroscopy Method

Laser Spectroscopy of Nobelium Atoms

- First optical spectroscopy beyond Z=100 despite low yields on the atom-at-a-time scale
- Half-life range 2.4 s 55 s
- Several atomic and nuclear properties determined

M. Laatiaoui *et al.*, Nature 538, 495 (2016) S. Raeder et al., Phys. Rev. Lett. 120 (2018) 232503

Nobelium Ionization Potential from Rydberg Series

Count rate (s ⁻¹)	0.3 -	(a)	Series 1 Series 2 Series 3	23,200	23,300	23,400	23,500	23.600
	20,0			10,200	Vavenumber, V	(cm ⁻¹)	20,000	20,000
							 About 	35 aton
Method			IP (cn	n ⁻¹)	³ D ₃ (cr	$n^{-1})$	observed	
Experiment (this work)			53 444.0	0 ± 0.4	29 $\overline{652^{+8}_{-1}}$		Good agreem	
IHFSCC [4]			53 489 =	± 800	29 897 \pm	- 800		
CI+ all orders [5]			54 390 =	± 1100	$30\ 183\pm$	= 1100	theory predict	
MCDF [6]			53 701 =	± 1100			, ,	1
Extrapolation [30]			53 600 =	± 600			 Accur 	ate valu

P. Chhetri et al., Phys. Rev. Lett. 120 (2018) 263003

- nic states
- ent with atomic

ions

e for 1P1 state

Ionization Potential of Actinides and Transactinides

	IP (eV)					
Laser spectroscopy At SHIP / GSI	6.62621(5)					
Theory (Borschevsky et al., RCC)	6.632					
Extrapolation (Sugar)	6.65(7)					
T. K. Sato <i>et al.</i> <i>Nature</i> 520 (Apr.9) (2015) 209-211.						
T. Sato et al. JACS 2018, 140, 14609 No: IP ₁ (No) = 6.63±0.08 eV						
						Lr: IP ₁ (Lr) = 4.96 ± 0.08 e → Lr: [Rn]5 $f^{14}7s^{2}7p$
HELMHOLTZ						

ASSOCIATION Helmholtz Institute Mainz

Charge Radii in Actinides

Deformation in Nobelium

Calculations B. Schuetrumpf, W. Nazarewicz et al.

- Theoretical calculations using density functional theory predict:
- maximum deformation around N = 152
- central

depression in proton density already for nobelium

Central Depression in Nuclei

Hyperfine Structure in ²⁵³No

Prolate shape + best fit to the experiemental data:

- \rightarrow 7/2 nuclear spin can be excluded
- → A= 734(46) MHz; B= 2815(686) MHz

Improving Spectral Resolution by Supersonic Gas-Jet

- Directed movement of the atoms in the gas-jet, perpendicular to laser beams
- High Mach-number for low pressures and low temperatures
- \rightarrow Reduction of the Doppler-effect results in smaller linewidths

Higher Resolution – Laser Spectroscopy in Jet

Perform laser spectroscopy in gas jet formed in de Laval nozzle

- Resolution improves by more than factor 10
- Efficiency comparable to in-gas cell approach

R. Ferrer et al., Nature Communications 8, 14520 (2017)

New Setup Built – Online Commissioning 2019

S. Raeder, S. Nothhelfer et al.

In close collaboration with P. van Duppen's group

ASSOCIATION

Summary

- Laser spectroscopy provides new opportunities to track the nuclear structure evolution in the heaviest nuclei getting access to their shape and size
- Differential charge radii and nuclear moments of 4 nobelium isotopes have been obtained from laser spectroscopy
- Experimental data are in good agreement with atomic theory calculations and nuclear EDF calculations that also predict central depression
- Technical and methodical developments for extension to heavier elements under way

Thank you for your attention !

