v-nucleus reactions on ¹³C and ¹⁶O at supernova energies

Toshio Suzuki Nihon University, NAOJ, Tokyo

CNNP2020 Cape Town Feb. 28, 2020 v-detection

Scintillator (CH, ...), H₂O, Liquid-Ar, Fe $v^{-12}C$, $v^{-13}C$, $v^{-16}O$, $v^{-56}Fe$, $v^{-40}Ar$

Cross sections for various γ and particle emission channels

Detection of SNv and nucleosynthesis v-oscillation effects (MSW oscillations in SNe): dependence of charged-current reaction cross sections on v mass hierarchy

v- ¹³C reactions
Suzuki, Balantekin, Kajino, and Chiba
J. Phys. G 46, 075103 (2019)
v- ¹⁶O reactions
Suzuki, Chiba, Yoshida, Takahashi, and Umeda,

Phys. Rev. C98, 034613 (2018)

Neutrino oscillations in v-¹⁶O reactions Nakazato, Suzuki, and Sakuda, PTEP 2018, 123E02 (2018) v-nucleus reactions with new shell-model Hamiltonians

- v-¹²C, v- ¹³C: SFO (p-shell; space p-sd) Suzuki, Fujimoto, Otsuka, PR C69, (2003),
- * important roles of tensor force \rightarrow proper shell evolutions and change of magic numbers toward drip-lines

Otsuka, Suzuki, Fujimoto, Grawe, Akaishi, PRL 69 (2005)

• Spin responses of nuclei are quite well described.

GT strength in ¹²C, ¹⁴C; $O = g_A \sigma t_-$

Mag. mom. of p-shell nuclei; $\mu = g_s s + g_\ell \ell$

v-nucleus reactions

SFO: $g_A^{eff}/g_A = 0.95$ B(GT: 12C)_cal = experiment

 $(v, v'), (v_e, e^-)$ exclusive & inclusive SFO reproduces DAR cross sections

Suzuki, Chiba, Yoshida, Kajino, Otsuka, PR C74, 034307, (2006).

Suzuki, Balantekin, Kajino, PR C86, 015502 (2012)

PR C85, 064324 (2012)

Charged-current cross sections at SN v energies

Hauser-Feshbach statistical model

Branching ratios for γ and particle emission channels (with multi-particle emission channels): γ , n, p, np (d), nn, pp, ³H (nnp), ³He (npp), α , α p, α n, α nn, α np, α pp, ...

Isospin conservation is taken into account (S. Chiba)

Neutral-current neutron-emission cross sections

Coherent (elastic) scattering on light target Neutral current $A^{s}_{\mu} = V^{s}_{\mu} = 0$ $J^{(0)}_{\mu} = A^{3}_{\mu} + V^{3}_{\mu} - 2\sin^{2}\theta_{W}J^{\gamma}_{\mu}$ Vector part: $V^{(0)}_{\mu} = V^{3}_{\mu} - 2\sin^{2}\theta_{W}J^{\gamma}_{\mu}$ C0: $(G^{IV}_{E} - 2\sin^{2}\theta_{W}G_{E}) < g.s. | j_{0}(qr)Y^{(0)} | g.s. >$ $<=> \frac{1}{2}G^{p}_{E}(1 - 4\sin^{2}\theta_{W})\rho_{p}(r) - \frac{1}{2}G^{p}_{E}\rho_{n}(r)$ $(G^{n}_{E} \approx 0)$ $= -\frac{1}{2}G^{p}_{E}\{\rho_{n}(r) - 0.08\rho_{p}(r)\}$ $(\sin^{2}\theta_{W} = 0.23)$

Probe of neutron density distribution

Patton, Engel, MacLaghlin, Schunck, PRC 86, 024612 (2012)

$$\frac{d\sigma}{dT}(E,T) = \frac{G_F^2}{2\pi} M \{2 - \frac{2T}{T_{\text{max}}} + \frac{T^2}{E^2}\} \frac{Q_W^2}{4} F^2(Q^2), \quad T_{\text{max}} = 2E^2 / (2E + M)$$

$$T = recoil \ energy$$

$$Q_W = N - (1 - 4\sin^2\theta_W)Z$$

$$F(Q^2) = \{NF_n(Q^2) - (1 - 4\sin^2\theta_W)ZF_p(Q^2)\}/Q_W$$

$$Q^2 = 2MT + T^2$$

$$F_{n,p}(Q^2) = \int r^2 j_0(Qr)\rho_{n,p}(r)dr$$
$$\sigma(E) = \int_0^{T_{\text{max}}} dT \frac{d\sigma}{dT}(E,T)$$

Nuclear effects and Isotope dependence in coherent scattering

Spin-dipole sum

$$\begin{split} B(SD\lambda)_{\mp} &= \frac{1}{2J_i + 1} \sum_{f} |\langle f \parallel S_{\mp}^{\lambda} \parallel i \rangle|^2 \qquad S_{\mp,\mu}^{\lambda} = r[Y^1 \times \vec{\sigma}]_{\mu}^{\lambda} t_{\mp} \\ \text{NEWS-rule:} \qquad S_{-}^{\lambda} - S_{+}^{\lambda} &= \langle 0 \mid [\hat{S}_{-}^{\lambda}, \hat{S}_{+}^{\lambda}] \mid 0 \rangle = \frac{2\lambda + 1}{4\pi} (N \langle r^2 \rangle_n - Z \langle r^2 \rangle_p) \\ \text{Energy-weighted sum} \\ EWS_{\pm}^{\lambda} &= \sum_{i} |\langle \lambda, \mu \mid S_{\pm,\mu}^{\lambda} \mid 0 \rangle|^2 (E_{\lambda} - E_{0}), \\ EWS_{\pm}^{\lambda} &= EWS_{-}^{\lambda} + EWS_{+}^{\lambda} = \frac{1}{2} \langle 0 \mid [S_{-}^{\lambda\dagger}, [H, S_{-}^{\lambda}]] + [[S_{+}^{\lambda\dagger}, H], S_{+}^{\lambda}] \mid 0 \rangle \\ \text{kinetic energy term } (K) \text{ for } H = \frac{p^{\mu}}{2m} \qquad = 0 \text{ for LS-closed core} \\ EWS_{K}^{\lambda} &= \frac{3}{4\pi} (2\lambda + 1) \frac{\hbar^2}{2m} A[1 + \frac{f_{\lambda}}{3A} \langle 0 \mid \sum_{i} \vec{\sigma}_{i} \cdot \vec{\ell}_{i} \mid 0 \rangle] \\ &: f_{\lambda} = 2, 1 \text{ and } -1 \text{ for } \lambda^{\pi} = 0^{-}, 1^{-} \text{ and } 2^{-}, \text{ respectively.} \\ \text{One-body spin-orbit potential term} \qquad V_{LS} = -\xi \sum_{i} \vec{\ell}_{i} \cdot \vec{\sigma}_{i}, \vdots \\ EWS_{LS}^{\lambda} &= \frac{3}{4\pi} (2\lambda + 1) \frac{f_{\lambda}}{3} \xi \langle 0 \mid \sum_{i} (r_{i}^{2} + g_{\lambda} r_{i}^{2} \vec{\ell}_{i} \cdot \vec{\sigma}_{i}) \mid 0 \rangle \\ g_{\lambda} = 1 \text{ for } \lambda^{\pi} = 0^{-}, 1^{-} \text{ and } g_{\lambda} = -7/5 \text{ for } \lambda^{\pi} = 2^{-}. \\ \end{array}$$

Spin-dipole sum $S_{\lambda}(SD) = \sum_{\mu} <\lambda,\mu S^{\lambda}_{-,\mu} 0 > ^{2} = \langle$			$4b^2 = 2.99 \text{fm}^2$) $2b^2 = 8.98 \text{fm}^2$) $b^2 = 14.96 \text{fm}^2$)	$\Lambda^{\pi} = 0^{-}$ $\Lambda^{\pi} = 1^{-}$ $\Lambda^{\pi} = 2^{-}$	$p \rightarrow sd \\ \propto 2\lambda + 1$
EWS ^λ K+LS SFO-tls (/(K+LS) SFO (/(K+LS)	0 ⁻ 56.4 73.0 (1.29) 76.1 (1.35)	14 17 17	1 ⁻ 4.1 3.2 (1.20) 5.0 (1.21)	2 155 24 25	2- 5.9 MeV•fm ² 6.5 (1.58) 8.2 (1.66)
$\bar{E}_{\lambda} = EWS^{\lambda}_{-}/NEW$ SFO-tls SFO Tensor interaction:	S ^λ _, 0 ⁻ 24.5 25.8 attractive for	1 ⁻ 25.1 25.2 0⁻ ,2⁻, &	2 ⁻ 20.1 MeV 21.0 repulsive for	Sp str fro 1- ten	olitting of the rength comes om one-body LS rm and two-body nsor interaction

$$\begin{split} V_{T}(\mathbf{r}) &= F(r) \{ [\boldsymbol{\sigma}_{1} \times \boldsymbol{\sigma}_{2}]^{(2)} \times [r^{2}Y_{2}(\hat{r})]^{(2)} \}^{(0)} .\\ V_{T}(\mathbf{r}) &= F(r) \sum_{\lambda} \frac{\sqrt{4\pi}}{6} \left(\frac{10}{3} \right)^{1/2} \begin{cases} -2\sqrt{5} \\ \sqrt{15} \\ -1 \end{cases} \right\} \times \{ r_{1} [\boldsymbol{\sigma}_{1} \times Y_{1}(\hat{r}_{1})]^{(\lambda)} \\ \times r_{2} [\boldsymbol{\sigma}_{2} \times Y_{1}(\hat{r}_{2})]^{(\lambda)} \}^{(0)} , \quad \text{for } \lambda = \begin{cases} 0^{-} \\ 1^{-} \\ 2^{-} \end{cases} . \end{split}$$

\bullet µ-capture rate on ¹⁶O and the quenching factor

The muon capture rate for ¹⁶O (μ , ν_{μ}) ¹⁶N from the 1s Bohr atomic orbit

$$\omega_{\mu} = \frac{2G^2}{1 + \nu/M_T} \mid \phi_{1s} \mid^2 \frac{1}{2J_i + 1} (\sum_{J=0}^{\infty} \mid < J_f \parallel M_J - L_J \parallel J_i > \mid^2 + \mid < J_f \parallel T_J^{el} - T_J^{mag} \parallel J_i > \mid^2),$$

$$|\phi_{1s}|^2 = \frac{R}{\pi} (\frac{m_{\mu} M_T}{m_{\mu} + M_T} Z \alpha)^3 \qquad R = 0.79$$

Induced pseudo-scalar current $F_P(q_\mu^2) = \frac{2M_N}{q_\mu^2 + m_\pi^2} F_A(q_\mu^2)$ Goldberger-Treiman

$$-2M_{\rm N}F_{\rm A} = \sqrt{2}g_{\pi}F_{\pi}$$

$$f = g_A^{eff} / g_A = 0.95$$

SFO 10.21×10⁴ s⁻¹ (SFO/exp =0.995)
SFO-tls, 11.20×10⁴ s⁻¹ (SFO-tls/exp=1.092)
Exp. 10.26×10⁴ s⁻¹

Case1: previous branches used in ${}^{16}O(\gamma, n, p, \alpha\text{-emissions})$ and HW92 cross sections Case2: previous branches, and new cross sections Case3: multi-particle branches and new cross sections

Production yields of ¹¹B and ¹¹C (10⁻⁷M_{\odot}) $15 M_{\odot}$ $20M_{\odot}$ yields Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 $M(^{11}B)$ 2.943.132.926.776.587.66 $M(^{11}C)$ 2.802.713.209.338.91 9.64 $M(^{11}B+^{11}C)$ 5.745.626.3316.1015.4917.29T. Yoshida

ν oscillation effects $\rightarrow \nu$ mass hierarchy

Charged current scattering off ¹⁶O nucleus as a detection channel of supernova neutrinos

(M, Z) =(20M_{\odot}, 0.02) Z = metalicity <E_v_e> = 9.32 MeV, <E_v_e> = 11.1 MeV, <E_v_x> =11.9 MeV

1.

Expected event numbers

	ordinary supernova					
reaction	no osc.	normal	inverted			
${}^{16}{\rm O}(\nu_e, e^-){\rm X}$	41	178	134			
${}^{16}\mathrm{O}(\bar{\nu}_e, e^+)\mathrm{X}$	36	58	103			
electron scattering	140	157	156			
inverse β -decay	3199	3534	4242			
total	3416	3927	4635			

10 kpc, Super-K (32.8 kton)

Nakazato et al., ApJ. Suppl. 205, 2 (2013)

Table 6Expected event numbers with a threshold energy of $E_e = 5$ MeV for the modelsin Table 5.

	black hole formation		
reaction	no osc.	normal	inverted
$^{16}O(\nu_e, e^-)X$	2482	2352	2393
${}^{16}\mathrm{O}(\bar{\nu}_e, e^+)\mathrm{X}$	1349	1255	1055
electron scattering	514	320	351
inverse β -decay	17525	14879	9255
total	21870	18806	13054

Fig. 5 Same as Fig. 4 but for the model with $(M, Z) = (30M_{\odot}, 0.004)$, which corresponds to a black-hole-forming collapse.

Summary

- 1. $v^{-12}C$ GT + SD shell-model with SFO Coherent scattering
 - $v^{-13}C$ GT + SD, n-emission channel, coherent scatt.
 - $v^{-16}O$ SD shell-model with SFO-tls
 - Partial cross sections for particle and γ emission channels with Hauser-Feshbach statistical model
 - Synthesis of ¹¹B: ¹²C (v, v'p) ¹¹B, ¹⁶O (v, v'ap) ¹¹B ¹¹C: ¹²C(v, e⁻p) ¹¹C, ¹⁶O (v, e⁻ap) ¹¹C
- 2. MSW v oscillation effects Mass hierarchy dependence: Cross sections of ¹⁶O (v, e⁻) X and ¹⁶O (v, e⁺) X induced by SN v

Collaborators

S. Chiba^a, T. Yoshida^b, K. Nakazato^c, M. Sakuda^d, A. B. Balantekin^h, T. Kajino ^{b,e}, T. Otsuka^f, M. Honma^g, K. Takahashiⁱ, H. Umeda^b

^aTokyo Institute of Technology
^bThe University of Tokyo
^cKyushu Univ.
^dOkayama Univ.
^eNational Astronomical Observatory of Japan
^fRIKEN
^gUniversity of Aizu
^hUniv. of Wisconsin
ⁱMax-Planck Institute (Potsdam)

Backups

Effects of collective v oscillation

Splitting (swapping) of v spectrum occurs for inverted (normal) hierarchy for v,
and for normal (inverted) hierarchy for anti-v.
Bimodial instability: Raffelt et al., PPNP 64 (2010)

ν:	Collective	MSW	Collect.+MSW
normal	×	0	0
invertee	d O	×	0

•MAA: Multi-azimuthal-angle instability Splitting also occurs for normal (inverted) hierarchy for v (anti-v); $N(v_e) > N(v_e)$ Raffelt et al., PRL111, 091101 (2011)

Chakraborty and Mirizzi, PRD 90, 033004 (2014)

ν:	Collective	MSW	Collect.+MSW
normal	0	0	×
inverted	d O	×	0

First Detection of $^{7}Li/^{11}B$ in SN-
grains in Murchison MeteoriteBayesian analysis:
Mathews, Kajino, Aoki and Fujiya,
Phys. Rev. D85,105023 (2012).•W. Fujiya, P. Hoppe, & U. Ott, ApJPhys. Rev. D85,105023 (2012). $^{7}So, L7 (2011).$ For MAA instability case:
 $^{7}Li/^{11}B \rightarrow$ normal hierarchy (?)

New Antineutrino Energy Spectra Predictions from the Summation of Beta Decay Branches of the Fission Products

M. Fallot, S. Cormon, M. Estienne, A. Algora, V. M. Bui, A. Cucoanes, M. Elnimr, L. Giot, D. Jordan, J. Martino, A. Onillon, A. Porta, G. Pronost, A. Remoto, J. L. Taín, F. Yermia, and A.-A. Zakari-Issoufou

Phys. Rev. Lett. 109, 202504 – Published 13 November 2012

Production yields of ¹¹B and ¹¹C (10⁻⁷M $_{\odot}$)

	15M _☉ モデル		$20 M_{\odot}$ モデル			
核種生成量	Case 1	Case 2	Case 3	Case 1	Case 2	Case 3
$M(^{11}B)$	2.94	2.92	3.13	6.77	6.58	7.66
$M(^{11}C)$	2.80	2.71	3.20	9.33	8.91	9.64
$M(^{11}\mathrm{B}{+}^{11}\mathrm{C})$	5.74	5.62	6.33	16.10	15.49	17.29

T. Yoshida

Case1: previous branches used in ¹⁶O (γ , n, p, α -emissions) and HW92 cross sections Case2: previous branches, and new cross sections Case3: multi-particle branches and new cross sections

	Present work				Beacom-Vogel [8]
Reaction	FD	mMB	NK1	NK2	FD
$p(\bar{v}_e, e^+)n$	6000	6000	3260	17300	8300
NC ${}^{16}O(\nu,\nu'){}^{16}O^{\bullet}(E_{\gamma}>5 \text{ MeV})$	456	9	57	940	710
Cf. CC ${}^{16}O(v_e, e^-) + {}^{16}O(\bar{v}_e, e^+)(E_e > 5 \text{ MeV})$ [26]	-	-	77	3831	-
ve elastic scattering [26]	-	-	140	514	-

Table III. Expected number of neutrino events from a core-collapse supernova at 10 kpc to be detected at Super-K (32.8kton).