Nuclear Responses for Double Beta Decay and Muon Capture

& ν Nuclear Responses by Nuclear and Lepton (μ) Charge-Exchange Reactions (CERs)

Lotta Jokiniemi (& Hiro Ejiri)

CNNP2020, South Africa, February 28, 2020

Lotta Jokiniemi (& Hiro Ejiri)

OMC as a probe of $0\nu\beta\beta$

CNNP2020 1 / 28

Table of Contents

1 Motivation

O Muon capture formalism

3 Results

Muon capture rate distribution on ¹⁰⁰Mo Muon capture rate distributions on the daughter nuclei of key $\beta\beta$ -decay triplets OMC rates compared with $0\nu\beta\beta$ matrix elements

Next Steps

5 Summary

On Behalf of Prof. Ejiri

Lotta Jokiniemi (& Hiro Ejiri)

Motivation

 $0\nu\beta\beta$ decays challenging to study \rightarrow Ordinary muon capture (OMC) serves as a detour.

OMC as a probe of $0\nu\beta\beta$

Motivation

 0νββ decays challenging to study

 Ordinary muon capture (OMC) serves as a detour.

 Reliable description of the intermediate states essential for probing the half-lives of 0νββ-decay.

Motivation

 0νββ decays challenging to study

 Ordinary muon capture (OMC) serves as a detour.

 Reliable description of the intermediate states essential for probing the half-lives of 0νββ-decay.

 Connections between OMC rates and 0νββ decay could shed light on unknown effective values of g_A and g_P.

Lotta Jokiniemi (& Hiro Ejiri)

OMC as a probe of $0\nu\beta\beta$

Table of Contents

Motivation

2 Muon capture formalism

3 Results

Muon capture rate distribution on ¹⁰⁰Mo Muon capture rate distributions on the daughter nuclei of key $\beta\beta$ -decay triplets OMC rates compared with $0\nu\beta\beta$ matrix elements

Next Steps

5 Summary

On Behalf of Prof. Ejiri

Lotta Jokiniemi (& Hiro Ejiri)

CNNP2020 4/28

Ordinary Muon Capture (OMC)

OMC

$$\mu^- + (A,Z)
ightarrow
u_\mu + (A,Z-1)$$

• Weak interaction process with high energy release and large momentum transfer (quite like $0\nu\beta\beta$ decay!).

Lotta Jokiniemi (& Hiro Ejiri)

OMC as a probe of $0\nu\beta\beta$

CNNP2020 5 / 28

Ordinary Muon Capture (OMC)

OMC

$$\mu^- + (A,Z) \rightarrow
u_\mu + (A,Z-1)$$

- Weak interaction process with high energy release and large momentum transfer (quite like $0\nu\beta\beta$ decay!).
- Energy release is about 100 MeV, of which the largest fraction is donated to the neutrino.

Ordinary Muon Capture (OMC)

OMC

$$\mu^- + (A,Z) \rightarrow
u_\mu + (A,Z-1)$$

- Weak interaction process with high energy release and large momentum transfer (quite like $0\nu\beta\beta$ decay!).
- Energy release is about 100 MeV, of which the largest fraction is donated to the neutrino.
- Large mass of the captured muon allows forbidden transitions and high excitation energies of the final state.

OMC rates based on Morita-Fujii formalism ¹.

¹M. Morita, and A. Fujii, Phys. Rev. **118**, 606 (1960).
 ²H. Primakoff, Rev. Mod. Phys. **31**, 802 (1959).
 ³L. Jokiniemi, and J. Suhonen, Phys. Rev. C **100**, 014619 (2019).
 Lotta Jokiniemi (& Hiro Ejiri)
 OMC as a probe of 0νββ

CNNP2020

6 / 28

OMC rates based on Morita-Fujii formalism ¹. Muon wave function computed using point-like nucleus approximation.

¹M. Morita, and A. Fujii, Phys. Rev. **118**, 606 (1960).
 ²H. Primakoff, Rev. Mod. Phys. **31**, 802 (1959).
 ³L. Jokiniemi, and J. Suhonen, Phys. Rev. C **100**, 014619 (2019).
 Lotta Jokiniemi (& Hiro Ejiri)
 OMC as a probe of 0νββ

CNNP2020

6 / 28

OMC rates based on Morita-Fujii formalism ¹.

- Muon wave function computed using point-like nucleus approximation.
- Muonic screening taken into account by the Primakoff method ².

¹M. Morita, and A. Fujii, Phys. Rev. **118**, 606 (1960).
 ²H. Primakoff, Rev. Mod. Phys. **31**, 802 (1959).
 ³L. Jokiniemi, and J. Suhonen, Phys. Rev. C **100**, 014619 (2019).
 Lotta Jokiniemi (& Hiro Ejiri)

6 / 28

CNNP2020

- OMC rates based on Morita-Fujii formalism ¹.
- Muon wave function computed using point-like nucleus approximation.
- Muonic screening taken into account by the Primakoff method ².
- Capture rate to a J^π final state can be written as 3

$$W = 8\left(\frac{Z_{\text{eff}}}{Z}\right)^4 P(\alpha Z m'_{\mu})^3 \frac{2J_f + 1}{2J_i + 1} \left(1 - \frac{q}{m_{\mu} + AM}\right) q^2 .$$
(1)

¹M. Morita, and A. Fujii, Phys. Rev. **118**, 606 (1960).
 ²H. Primakoff, Rev. Mod. Phys. **31**, 802 (1959).
 ³L. Jokiniemi, and J. Suhonen, Phys. Rev. C **100**, 014619 (2019).
 Lotta Jokiniemi (& Hiro Ejiri)

6 / 28

CNNP2020

Table of Contents

Motivation

O Muon capture formalism

3. Results

Muon capture rate distribution on ¹⁰⁰Mo Muon capture rate distributions on the daughter nuclei of key $\beta\beta$ -decay triplets OMC rates compared with $0\nu\beta\beta$ matrix elements

Next Steps

5 Summary

On Behalf of Prof. Ejiri

Lotta Jokiniemi (& Hiro Ejiri)

CNNP2020 7 / 28

Table of Contents

Motivation

O Muon capture formalism

3. Results

Muon capture rate distribution on ¹⁰⁰Mo Muon capture rate distributions on the daughter nuclei of key $\beta\beta$ -decay triplets OMC rates compared with $0\nu\beta\beta$ matrix elements

Next Steps

5 Summary

On Behalf of Prof. Ejiri

Lotta Jokiniemi (& Hiro Ejiri)

Theoretical vs. Experimental Muon Capture Spectra in ¹⁰⁰Nb

OMC on ¹⁰⁰Mo

$$\mu^{-} + {}^{100}Mo(0^+_{g.s.}) \rightarrow \nu_{\mu} + {}^{100}Nb(J^{\pi})$$

• For the first time, OMC giant resonance was observed in ¹⁰⁰Nb ¹.

¹I. H. Hashim *et al.*, *Phys. Rev. C*, **97**, 014617 (2018). ²L. Jokiniemi, J. Suhonen, H. Ejiri, and I. H. Hashim, *Phys. Lett. B* **794**, 143 (2019). Lotta Jokiniemi (& Hiro Ejiri) OMC as a probe of $0\nu\beta\beta$ CNNP2020 9/28

Theoretical vs. Experimental Muon Capture Spectra in ¹⁰⁰Nb

OMC on ¹⁰⁰Mo

$$\mu^{-} + {}^{100}Mo(0^+_{g.s.}) \rightarrow \nu_{\mu} + {}^{100}Nb(J^{\pi})$$

- For the first time, OMC giant resonance was observed in ¹⁰⁰Nb ¹.
- OMC rate distribution to the excited states of ¹⁰⁰Nb computed and compared with the experimental strength distribution ².

¹I. H. Hashim *et al.*, *Phys. Rev. C*, **97**, 014617 (2018). ²L. Jokiniemi, J. Suhonen, H. Ejiri, and I. H. Hashim, *Phys. Lett. B* **794**, 143 (2019). Lotta Jokiniemi (& Hiro Ejiri) OMC as a probe of $0\nu\beta\beta$ CNNP2020 9/28

Theoretical vs. Experimental Muon Capture Spectra in ¹⁰⁰Nb

OMC on ¹⁰⁰Mo

$$\mu^{-} + {}^{100}\mathrm{Mo}(0^{+}_{\mathrm{g.s.}}) \rightarrow \nu_{\mu} + {}^{100}\mathrm{Nb}(J^{\pi})$$

- For the first time, OMC giant resonance was observed in ¹⁰⁰Nb ¹.
- OMC rate distribution to the excited states of ¹⁰⁰Nb computed and compared with the experimental strength distribution ².
- Involved nuclear wave functions computed with pnQRPA with large no-core single-particle bases.

¹I. H. Hashim *et al.*, *Phys. Rev. C*, **97**, 014617 (2018). ²L. Jokiniemi, J. Suhonen, H. Ejiri, and I. H. Hashim, *Phys. Lett. B* **794**, 143 (2019). Lotta Jokiniemi (& Hiro Ejiri) OMC as a probe of $0\nu\beta\beta$ CNNP2020 9/28

Theoretical vs. Experimental Muon Capture Spectra in ¹⁰⁰Nb

Figure 1: pnQRPA relative OMC rate distribution compared with the experimental distribution ¹.

Figure 2: Experimental muon capture strength distribution in ¹⁰⁰Nb.²

¹L. Jokiniemi, J. Suhonen, H. Ejiri, and I. H. Hashim, *Phys. Lett. B* **794** (2018). ²I. H. Hashim *et al.*, *Phys. Rev. C*, **97**, 014617 (2018).

Lotta Jokiniemi (& Hiro Ejiri)

OMC as a probe of $0\nu\beta\beta$

CNNP2020 10 / 28

Theoretical vs. Experimental Muon Capture Spectra in ¹⁰⁰Nb

Figure 1: pnQRPA relative OMC rate distribution compared with the experimental distribution ¹.

Figure 2: Experimental muon capture strength distribution in ¹⁰⁰Nb.²

Both distributions show giant resonance at around 12 MeV!

¹L. Jokiniemi, J. Suhonen, H. Ejiri, and I. H. Hashim, *Phys. Lett. B* **794** (2019). ²I. H. Hashim *et al.*, *Phys. Rev. C*, **97**, 014617 (2018).

Lotta Jokiniemi (& Hiro Ejiri)

OMC as a probe of $0\nu\beta\beta$

CNNP2020 10 / 28

Total Muon Capture Rate in ¹⁰⁰Nb

Primakoff estimate for the total muon capture rate

$$W_{\mathrm{Pr.}}(A,Z) = Z_{\mathrm{eff}}^4 X_1 \left[1 - X_2 \left(rac{A-Z}{2A}
ight)
ight] \; ,$$

(2)

where $X_1 = 170 \text{ 1/s}$ and $X_2 = 3.125$, gives $W_{\text{Pr.}}(^{100}\text{Mo}) = 7.7 \times 10^6 \text{ 1/s}.$

¹L. Jokiniemi, J. Suhonen, H. Ejiri, and I. H. Hashim, *Phys. Lett. B* **794**, 143 (2019). Lotta Jokiniemi (& Hiro Ejiri) OMC as a probe of $0\nu\beta\beta$ CNNP2020 11/28

Total Muon Capture Rate in ¹⁰⁰Nb

Primakoff estimate for the total muon capture rate

$$W_{\rm Pr.}(A,Z) = Z_{\rm eff}^4 X_1 \left[1 - X_2 \left(\frac{A-Z}{2A} \right) \right] , \qquad (2)$$

where $X_1 = 170 \text{ 1/s}$ and $X_2 = 3.125$, gives $W_{\text{Pr.}}(^{100}\text{Mo}) = 7.7 \times 10^6 \text{ 1/s}.$

• Total OMC rate value obtained from pnQRPA calculations (with $g_A = 0.8$ and $g_P = 10$) was $W_{tot} = 17.7 \times 10^6 \text{ 1/s}^{-1} \rightarrow \text{This suggests for quenched } g_A \approx 0.5 \text{ !}$

¹L. Jokiniemi, J. Suhonen, H. Ejiri, and I. H. Hashim, *Phys. Lett. B* **794**, 143 (2019). Lotta Jokiniemi (& Hiro Ejiri) OMC as a probe of $0\nu\beta\beta$ CNNP2020 11/28

Total Muon Capture Rate in ¹⁰⁰Nb

Primakoff estimate for the total muon capture rate

$$W_{\mathrm{Pr.}}(A,Z) = Z_{\mathrm{eff}}^4 X_1 \left[1 - X_2 \left(\frac{A-Z}{2A} \right) \right] , \qquad (2)$$

where $X_1 = 170 \text{ 1/s}$ and $X_2 = 3.125$, gives $W_{\text{Pr.}}(^{100}\text{Mo}) = 7.7 \times 10^6 \text{ 1/s}.$

- Total OMC rate value obtained from pnQRPA calculations (with $g_{\rm A} = 0.8$ and $g_{\rm P} = 10$) was $W_{\rm tot} = 17.7 \times 10^6 \ 1/s^{-1}$ \rightarrow This suggests for quenched $g_{\rm A} \approx 0.5$!
- Comparing the total OMC strengths suggests for similar effective value of g_A . This is also in keeping with the β decay results (see Prof. Ejiri's contribution).

¹L. Jokiniemi, J. Suhonen, H. Ejiri, and I. H. Hashim, *Phys. Lett. B* **794**, 143 (2019). Lotta Jokiniemi (& Hiro Ejiri) OMC as a probe of $0\nu\beta\beta$ CNNP2020 11/28

Table of Contents

Motivation

O Muon capture formalism

3. Results

Muon capture rate distribution on 100 Mo Muon capture rate distributions on the daughter nuclei of key $\beta\beta$ -decay triplets

OMC rates compared with $0
u\beta\beta$ matrix elements

Next Steps

5 Summary

On Behalf of Prof. Ejiri

Lotta Jokiniemi (& Hiro Ejiri)

CNNP2020 12 / 28

 OMC rates to the intermediate nuclei of neutrinoless double beta (0νββ) decays of current experimental interest are computed in the pnQRPA framework ¹.

¹L. Jokiniemi, and J. Suhonen, Phys. Rev. C **100**, 014619 (2019). ²D. Zinatulina *et al.*, Phys. Rev. C **99**, 024327 (2019).

Lotta Jokiniemi (& Hiro Ejiri)

OMC as a probe of $0\nu\beta\beta$

CNNP2020 13 / 28

- OMC rates to the intermediate nuclei of neutrinoless double beta $(0\nu\beta\beta)$ decays of current experimental interest are computed in the pnQRPA framework ¹.
- The corresponding OMC (capture-rate) strength functions have been analyzed in terms of multipole decompositions.

¹L. Jokiniemi, and J. Suhonen, Phys. Rev. C **100**, 014619 (2019). ²D. Zinatulina *et al.*, Phys. Rev. C **99**, 024327 (2019).

Lotta Jokiniemi (& Hiro Ejiri)

OMC as a probe of $0\nu\beta\beta$

CNNP2020 13 / 28

- OMC rates to the intermediate nuclei of neutrinoless double beta $(0\nu\beta\beta)$ decays of current experimental interest are computed in the pnQRPA framework ¹.
- The corresponding OMC (capture-rate) strength functions have been analyzed in terms of multipole decompositions.
- The computed low-energy OMC-rate distribution to ⁷⁶As is compared with the available data of Zinatulina *et al.*²

¹L. Jokiniemi, and J. Suhonen, Phys. Rev. C **100**, 014619 (2019). ²D. Zinatulina *et al.*, Phys. Rev. C **99**, 024327 (2019).

Lotta Jokiniemi (& Hiro Ejiri)

OMC as a probe of $0\nu\beta\beta$

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

CNNP2020

13 / 28

OMC Rates to the Lowest States of ⁷⁶As

Table 1: Experimental OMC rates ¹ below 1.1 MeV in ⁷⁶As compared with the pnQRPA-computed rates ². 'g.s.': transitions to the ground state.

	OMC rate (1/s)				
J^{π}	Exp.	`pnQRPA			
0+	5120	414			
1^+	218 240	236 595			
1^{-}	31 360	28 991			
2+	120 960	114 016			
2-	145 920 + g.s.	177 802			
3+	60 160	55 355			
3-	53 120	34 836			
4+	-	2797			
4-	30 080	23 897			

¹D. Zinatulina *et al.*, Phys. Rev. C **99**, 024327 (2019). ²L. Jokiniemi, and J. Suhonen, Phys. Rev. C **100**, 014619 (2019). Lotta Jokiniemi (& Hiro Ejiri) OMC as a probe of $0\nu\beta\beta$ CNNP2020 15/28

Table of Contents

Motivation

O Muon capture formalism

3 Results

Muon capture rate distribution on ¹⁰⁰Mo Muon capture rate distributions on the daughter nuclei of key $\beta\beta$ -decay triplets OMC rates compared with $0\nu\beta\beta$ matrix elements

Next Steps

5 Summary

On Behalf of Prof. Ejiri

Lotta Jokiniemi (& Hiro Ejiri)

OMC vs. 0 uetaeta in ⁷⁶As

Figure 5: $0\nu\beta\beta$ matrix elements vs. OMC rates to the daughter nucleus of $0\nu\beta\beta$ decay in the A=76 system ¹. J^{π} refers to the angular momentum of the virtual states of the intermediate nucleus of $0\nu\beta\beta$ decay.

¹L. Jokiniemi, J. Suhonen, *Phys. Rev. C* (2020), *submitted*.

Lotta Jokiniemi (& Hiro Ejiri)

OMC as a probe of $0\nu\beta\beta$

CNNP2020 17 / 28

OMC vs. 0 uetaeta in 136 Cs

Figure 6: $0\nu\beta\beta$ matrix elements vs. OMC rates to the daughter nucleus of $0\nu\beta\beta$ decay in the A=136 system ¹. J^{π} refers to the angular momentum of the virtual states of the intermediate nucleus of $0\nu\beta\beta$ decay.

¹L. Jokiniemi, J. Suhonen, *Phys. Rev. C* (2020), *submitted*.

Lotta Jokiniemi (& Hiro Ejiri)

OMC as a probe of $0\nu\beta\beta$

CNNP2020 18 / 28

OMC vs. $0\nu\beta\beta$ Cumulative distributions

(a) A=76

(b) A=136

Figure 7: Normalized cumulative OMC rates and normalized $0\nu\beta\beta$ decay NMEs as functions of energy in the intermediate nuclei ⁷⁶As and ¹³⁶Cs of the A = 76 and A = 136 $0\nu\beta\beta$ decay triplets ¹.

¹L. Jokiniemi, J. Suhonen, *Phys. Rev. C* (2020), *submitted*.

Lotta Jokiniemi (& Hiro Ejiri)

OMC as a probe of $0\nu\beta\beta$

CNNP2020 19 / 28

Contributions from Different Multipoles

Table 2: Contributions (in percentages) from different multipoles to $0\nu\beta\beta$ -decay NMEs and OMC rates. The presented values are normalized ratios $M = M^{(0\nu)}(J^{\pi})/M^{(0\nu)}$ and $W = W_{\rm OMC}(J^{\pi})/W_{\rm OMC}$.

	Case	A	= 76	A =	= 136
J^{π}		Μ	W	М	W
0+		2	3	0.9	2
1+		7	23	7	17
1-		16	25	9	22
2+		13	13	14	16
2-		10	24	6	20
3+		5	9	7	12
3-		11	2	9	6
4+	.6	7	0.2	9	1
4-		5	1	5	4
Σ	1	76	100	67	100

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

Lotta Jokiniemi (& Hiro Ejiri)

OMC as a probe of $0\nu\beta\beta$

Table of Contents

Motivation

O Muon capture formalism

3 Results

Muon capture rate distribution on ¹⁰⁰Mo Muon capture rate distributions on the daughter nuclei of key $\beta\beta$ -decay triplets OMC rates compared with $0\nu\beta\beta$ matrix elements

4 Next Steps

5 Summary

6 On Behalf of Prof. Ejiri

Lotta Jokiniemi (& Hiro Ejiri)

CNNP2020 21 / 28

Next: Improved Bound Muon Wave Functions

So far we have used point-like-nucleus approximation ¹

$$G_{-1} = 2(\alpha Z m'_{\mu})^{\frac{3}{2}} e^{-\alpha Z m'_{\mu} r} ,$$

 $F_{-1} = 0$

(3)

(4)

for the bound muon wave function

$$\psi_{\mu}(\kappa,\mu;\mathbf{r}) = \psi_{\kappa\mu}^{(\mu)} = \begin{pmatrix} iF_{\kappa}\chi_{-\kappa\mu} \\ G_{\kappa}\chi_{\kappa\mu} \end{pmatrix}$$

¹H. A. Bethe and E. E. Salpeter, *Quantum Mechanics of One- and Two* $V_{UNVERSIT}^{PAPECTYOPPISTO}$ *Atoms* (1959). Lotta Jokiniemi (& Hiro Ejiri) OMC as a probe of $0\nu\beta\beta$ CNNP2020 22/28

Next: Improved Bound Muon Wave Functions

So far we have used point-like-nucleus approximation 1

$$G_{-1} = 2(\alpha Z m'_{\mu})^{\frac{3}{2}} e^{-\alpha Z m'_{\mu} r}$$
$$F_{-1} = 0$$

(3)

(4)

for the bound muon wave function

$$\psi_{\mu}(\kappa,\mu;\mathbf{r}) = \psi_{\kappa\mu}^{(\mu)} = \begin{pmatrix} iF_{\kappa}\chi_{-\kappa\mu} \\ G_{\kappa}\chi_{\kappa\mu} \end{pmatrix}$$

In reality, nuclei are not point-like. How good is the approximation?

¹H. A. Bethe and E. E. Salpeter, *Quantum Mechanics of One- and Two* $V_{UNVERSIT}^{PIECTFORPISTO}$ *Atoms* (1959). Lotta Jokiniemi (& Hiro Ejiri) OMC as a probe of $0\nu\beta\beta$ CNNP2020 22/28

Next: Improved Bound Muon Wave Functions

(a) ¹²C.

(b) ¹⁰⁰Mo.

Figure 8: Wave functions of a muon bound in extended Coulomb fields created by the nucleus of ¹²C and ¹⁰⁰Mo. The point-like-nucleus approximation is compared with more realistic wave function taking into account the finite size of the nucleus. Muon wave functions by J&Kotila.

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYL

Lotta Jokiniemi (& Hiro Ejiri)

Very Preliminary Results: OMC to lowest states of ¹²B

Table 3: OMC rates to the lowest states of ¹²B obtained using exact bound muon wave function or point-like-nucleus approximation.

	F		
J_i^{π}	Exact	Point-like approx.	Ratio
1_{gs}^+	$7.5 imes10^3$	$13.1 imes10^3$	0.57
2^{+}_{1}	500	890	0.57
2^{-}_{1}	3	5	0.67
1^{-}_{1}	$1.1 imes10^3$	$1.8 imes10^3$	0.58
0^{+}_{1}	0.1	0.2	0.56
3_1^{-}	14	22	0.64

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

Table of Contents

Motivation

O Muon capture formalism

3 Results

Muon capture rate distribution on ¹⁰⁰Mo Muon capture rate distributions on the daughter nuclei of key $\beta\beta$ -decay triplets OMC rates compared with $0\nu\beta\beta$ matrix elements

Next Steps

5 Summary

6 On Behalf of Prof. Ejiri

Lotta Jokiniemi (& Hiro Ejiri)

CNNP2020 25 / 28

Nuclear muon capture serves as a useful way to improve the accuracy of $0\nu\beta\beta$ decay calculations.

Lotta Jokiniemi (& Hiro Ejiri)

OMC as a probe of $0\nu\beta\beta$

CNNP2020 26 / 28

Nuclear muon capture serves as a useful way to improve the accuracy of $0\nu\beta\beta$ decay calculations.

 So far, the theoretical muon capture giant resonances and low-energy OMC rates seem to match the experimental ones.

Lotta Jokiniemi (& Hiro Ejiri)

OMC as a probe of $0\nu\beta\beta$

CNNP2020 26 / 28

- Nuclear muon capture serves as a useful way to improve the accuracy of $0\nu\beta\beta$ decay calculations.
- So far, the theoretical muon capture giant resonances and low-energy OMC rates seem to match the experimental ones.
- Comparing the total capture rates with Primakoff estimates suggests for strongly quenched g_A value.

- Nuclear muon capture serves as a useful way to improve the accuracy of $0\nu\beta\beta$ decay calculations.
- So far, the theoretical muon capture giant resonances and low-energy OMC rates seem to match the experimental ones.
- Comparing the total capture rates with Primakoff estimates suggests for strongly quenched g_A value.
- There are correspondences between the multipole decompositions of 0νββ decay NMEs and OMC rates, and overall the cumulative behavior of the 0νββ decay NMEs and OMC rates is quite similar.

Lotta Jokiniemi (& Hiro Ejiri)

OMC as a probe of $0\nu\beta\beta$

- Nuclear muon capture serves as a useful way to improve the accuracy of $0\nu\beta\beta$ decay calculations.
- So far, the theoretical muon capture giant resonances and low-energy OMC rates seem to match the experimental ones.
- Comparing the total capture rates with Primakoff estimates suggests for strongly quenched g_A value.
- There are correspondences between the multipole decompositions of 0νββ decay NMEs and OMC rates, and overall the cumulative behavior of the 0νββ decay NMEs and OMC rates is quite similar.
- The bound muon wave function may partly explain the quenching of g_A?

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

Table of Contents

Motivation

O Muon capture formalism

3 Results

Muon capture rate distribution on ¹⁰⁰Mo Muon capture rate distributions on the daughter nuclei of key $\beta\beta$ -decay triplets OMC rates compared with $0\nu\beta\beta$ matrix elements

Next Steps

5 Summary

6 On Behalf of Prof. Ejiri

Lotta Jokiniemi (& Hiro Ejiri)

CNNP2020 27 / 28

 \vee nuclear responses by nuclear and lepton (μ) charge exchange reactions (CERs) **Collaboration with** H. Ejiri RCNP, I. Hashim UTM, L. Jokiniemi, J. Suhonen Jyvaskyla, D. Zinatulina JINR **v** nuclear responses (nucl. matrix element NME)² are crucial for $\beta\beta$ decays & astro ν interactions.

H. Ejiri, J. Suhonen, K. Zuber Physics Report 797 1 2019

H. Ejiri thanks the organizers for that this talk is presented by his collaborator, L. Jokiniemi.

Nuclear & lepton (µ) CERs for CC v responses

(³He,t) τ - side ν , and $(\mu,\nu_{\mu}) \tau$ + side anti- ν CCs associated with DBD ν -exchange responses , and with astro ν and anti- ν responses

Nuclear and µ CERs cover the large E & P regions as DBD & astro v P~ 100-50 MeV/c E~0-50 MeV

^{74,76} Ge (³He,t) CER at RCNP Osaka JP G 2020 H. Ejiri, in collaboration Catania C. Agodi, F. Cappuzzello, et al, KVI, Konan, et al., and J.H. Thies PR 2012 et al

 τ^{-} (⁷⁶Ge to ⁷⁶As) SD (2-) blue, the major component of DBD NME , was clearly excited in addition to GT and SD GRs

74,76 Ge (³He,t) CER at RCNP Osaka JP G 2020

The NME is $M(SD)=1.50 \ 10^{-3}$ n.u. (natural unit) like other SD NMEs. They are smaller than the pnQRPA NME (Suhonen) by the coefficient of $g_A \ ^{eff}/g_A \sim 0.35 - 0.4$

H. Ejiri Proc. e-γ conference Sendai 1972,
H. Ejiri et al., JPSJ 2014
I. Hashim H. Ejiri et al., PRC 97 (2018) 014617

 $\label{eq:multiplicative} \begin{array}{l} \mu-GR~(Giant~resonance) \\ \mbox{Muon transition~rate~as~a~function~of~the~excitation~E~was } \\ \mbox{derived~from~the~residual~isotope~mass~distribution~.} \\ \mbox{μ-GR~around~12-14~MeV~was~found~.} \\ \mbox{The~OMC~rate~:~6.7~\pm1.3~10^6/sec.} \end{array}$

I, Hashim H. Ejiri et al., Phys. Rev. C 97 014617 2018 I. Hashim H. Ejiri et al., DBD workshop RCNP 2020 .

OMC response $(B(\mu,E))$ was derived by exp. and theory.

H. Ejiri L. Jokiniemi J. Suhonen 2020

Exp. summed strength: and NME $S(\mu)=\int B(\mu,E)dE=0.146\pm0.03$ $M(\mu)=S(\mu)^{1/2}=0.38\pm0.04$

 $\begin{array}{l} Comparison \ of \ experiment \ and \\ pnQRPA \ S(\mu) \ (L. \ Jokiniemi \ et \ al.) \ suggests \\ a \ quenched \ g_A^{eff} \ \sim 0.5 \ , \ \ i.e. \ \ g_A^{eff} \ / g_A \ \sim 0.4 \end{array}$

Renormalization of axial vector couplings A=100 (Mo) M_{EXP}=k_{NM} M_{QRPA}, k_{NM} =renormalization by non-nucleonic and nuclear medium effects, that are not in QRPA.

µ-renormalization (quenching) $k_{\rm NM} = g_{\rm A}^{\rm eff}/g_{\rm A} \sim 0.4,$ as SD, GT NMEs*. **DBD** and astro-v NMEs are reduced. depending on the ratio of the axial to vector NMEs.

*H. Ejiri, N. Soukouti, J. Suhonen PL B 729 27 2014 *H. Ejiri, J. Suhonen J. Phys. G 42 055201 2015,

Concluding Remarks

1. Charge exchange nuclear & muon reactions provide τ - ν & τ + anti- ν responses in a wide E and P. 2. The high E resolution nuclear CER gives the SD NME for ⁷⁶Ge, M=1.5 10⁻³ n.u. The SD NMEs in A~74-78 are quenched by 0.35-0.4 with respect to pnQRPA NMRs. 3. µ-CER (OMC) rate on ¹⁰⁰Mo shows GR at around 20 MeV from ¹⁰⁰Mo (E~12-14 MeV from ¹⁰⁰Nb)). Rate= 6.7 10⁶/sec = $\Sigma G |M|^2$ with the phase space G~kq². M is extracted for the first time as M=0.38. 4. QRPA reproduces the experimental µ-GR. Ratio of Exp NME to QRPA NME based on a point -like nucleus for μ gives $g^{eff}/g_{A} \sim 0.4$. 5. The quenching coefficients for $\tau \pm$ NMEs lead a severe (0.3~0.5) quenching for DBD and astro neutrino NMEs

Comparison of Different Bound Muon Wave Functions

Lotta Jokiniemi (& Hiro Ejiri)

OMC as a probe of $0\nu\beta\beta$

CNNP2020 28/28

