

Theoretical Description of Half-lives and Electron Spectra for Higher Order Forbidden Non-unique β Decays

Anil Kumar

and Praveen C. Srivastava

Department of Physics, IIT Roorkee, India

Conference on Neutrino and Nuclear Physics (CNNP2020) iThemba LABS, Cape Town, 24-28 February 2020

1 Introduction

- Formalism of Forbidden Non-unique (FNU) Beta Decay
- **3** Model Space and Interactions (Nuclear Shell Model)
- Image: A stateImage: A stateImage: A stateA stateImage:
 - Log*ft* values and Half-lives
 - **\beta spectrum**
- **5** Summary

Introduction

Different types of beta decay:

- Allowed Beta Decay ($\Delta J = 0, \pm 1$, parity change = NO)
- Double beta decay
- Neutrinoless Double Beta Decay
- Forbidden Beta Decay
 - Unique $[\Delta J = K + 1](K$ is the order of forbiddeness of the transition)
 - Non unique $[\Delta J = K$, (in case of $K = 1, \Delta J = 0$)] (In both cases unique and non-unique forbidden β decay, the parity change for odd-forbidden and remain same in even-forbidden)
- The progress of experimental techniques in the beta decay experiments made it possible to test the predictive power of the nuclear models.
- ♦ The decay rate depends on g_A^2 for β and g_A^4 for ββ decays. $g_A \rightarrow$ axial-vector coupling constant

O. S. Kirseborm *et.al.*, "Measurement of 2⁺ → 0⁺ ground-state transition in the β decay of ²⁰F", Phys. Rev. C 100, 065805 (2019).
Jouni T. Suhonen, "Value of the Axial-Vector Coupling Strength in β and ββ Decays: A Review", Frontiers in Physics 5, 55 (2017).

Formalism of FNU Beta Decay

Half-life:

$$t_{1/2} = \frac{\kappa}{\tilde{C}} \,,$$

where κ is a constant with value 6147 *s* and \tilde{C} is the dimensionless integrated shape function, which can be expressed as

$$\tilde{C} = \int_{1}^{w_0} \frac{C(w_e) p w_e (w_0 - w_e)^2 F_0(Z_f, w_e) dw_e}{V_0(Z_f, w_e) dw_e}$$

here w_e is the total energy of emitted electron and w_0 is the endpoint energy of beta

spectrum.

The shape factor $C(w_e)$ contains the nuclear structure information. The general form of this factor is defined as

$$C(w_e) = \sum_{k_e, k_v, K} \lambda_{k_e} \left[M_K(k_e, k_v)^2 + m_K(k_e, k_v)^2 - \frac{2\gamma_{k_e}}{k_e w_e} M_K(k_e, k_v) m_K(k_e, k_v) \right].$$

H. Behrens, W. Bühring, Electron Radial Wave Functions and Nuclear Beta-Decay (Clarendon Press, Oxford, 1982).

- M. Haaranen, J. Kotila, and J. Suhonen, Phys. Rev. C 95, 024327 (2017).
- M. T. Mustonen, M. Aunola, and J. Suhonen, Phys. Rev. C 73, 054301 (2006).

Formalism of FNU Beta Decay

The quantities $M_K(k_e, k_v)$ and $m_K(k_e, k_v)$ are complicated expression of nuclear form factors and other kinematical factors. The auxiliary quantities are defined as

$$\lambda_{k_e} = \frac{F_{k_e-1}(Z_f, w_e)}{F_0(Z_f, w_e)} \text{ and } \gamma_{k_e} = [k_e^2 - (\alpha Z_f)^2]^{1/2}.$$

Where $F_{k_e-1}(Z_f, w_e)$ is the generalized Fermi function. In the impulse approximation, the form factor coefficients are related to nuclear matrix elements (NMEs)

$$R^{LV}F_{KLS}^{(N)}(k_e, m, n, \rho) = (-1)^{K-L}g_V^V \mathcal{M}_{KLS}^{(N)}(k_e, m, n, \rho)$$

$$R^{LA}F_{KLS}^{(N)}(k_e, m, n, \rho) = (-1)^{K-L+1}g_A^A \mathcal{M}_{KLS}^{(N)}(k_e, m, n, \rho)$$

The NMEs for a transition between an initial (i) and final (f) state is given by

$${}^{V/A}\mathcal{M}_{KLS}^{(N)}(pn)(k_e,m,n,\rho) = \frac{1}{\sqrt{2J_i + 1}} \sum_{pn} {}^{V/A} m_{KLS}^{(N)}(pn)(k_e,m,n,\rho)(\psi_f \| [c_p^{\dagger} \tilde{c}_n]_K \| \psi_i).$$

H. Behrens, W. Bühring, Electron Radial Wave Functions and Nuclear Beta-Decay (Clarendon Press, Oxford, 1982).

- M. Haaranen, J. Kotila, and J. Suhonen, Phys. Rev. C 95, 024327 (2017).
- M. T. Mustonen, M. Aunola, and J. Suhonen, Phys. Rev. C 73, 054301 (2006).

Transitions	K	BR%(Exp)	Model Space and Interactions
• ${}^{46}Sc(4^+) \rightarrow {}^{46}Ti(2^+)$	2	0.0036	Full $1f_{7/2}$, $2p_{3/2}$, $1f_{5/2}$, and $2p_{1/2}$
• ${}^{59}Fe(3/2^-) \rightarrow {}^{59}Co(7/2^-)$	2	0.18	KB3G ¹ and GXFP1A ² interactions.
• ${}^{87}\text{Rb}(3/2^-) \rightarrow {}^{87}\text{Sr}(9/2^+)$	3	100	► $2p_{3/2}$, $1f_{5/2}$, $2p_{1/2}$, $(1g_{9/2})^{2p,10n}$, $(2d_{5/2})^{0p,2n}$, $3s_{1/2}$, and $2d_{3/2}$ GLEPN ³ interaction.
• ${}^{24}\text{Na}(4^+) \rightarrow {}^{24}\text{Mg}(2^+)$	2	0.064	Full $0d_{5/2}$, $1s_{1/2}$, and $0d_{3/2}$
• ${}^{36}\text{Cl}(2^+) \rightarrow {}^{36}\text{Ar}(0^+)$	2	98.1	USDB ⁴ and DJ16A ⁵ interactions.

¹A. Poves et. al., Nucl. Phys. A 694 157 (2001).

- ²M. Honma et. al., Phys. Rev. C 69, 034335 (2004).
- ³H. Mach *et al.*, Phys. Rev. C **41**, 226 (1990).
- ⁴B. A. Brown et. al., Phys. Rev. C 74, 034315 (2006).
- ⁵N. A. Smirnova et. al., Phys. Rev. C 100, 054329 (2019).

Results for ⁴⁶Sc, ⁵⁹Fe, and ⁸⁷Rb Including the next-to-leading-order (NLO) terms in the shape factor.

Log ft values and Half-lives of ^{46}Sc and ^{59}Fe

For the calculations of the log ft and partial half-life, we have used the value of coupling constant $g_A = 1.00$ (quenched) and 1.27 (bare).

(vector coupling constant $g_V = 1.00$ from conserved vector current (CVC) hypothesis).

Log	<i>ft</i> values:					
			KB	3G	GXFP	21A
	Transitions	Expt	$g_A=1.00$	$g_A=1.27$	$g_A=1.00$	g _A =1.27
	46 Sc(4 ⁺) \rightarrow 46 Ti(2 ⁺)	12.94(9)	12.568	12.425	12.652	12.445
	$^{59}\text{Fe}(3/2^{-}) \rightarrow ^{59}\text{Co}(7/2^{-})$	11.14(10)	11.391	11.771	11.665	12.161

Partial half-life:

		KB	3G	GXFP1A		
Transitions	Expt	$g_A = 1.00$	g _A =1.27	$g_A = 1.00$	$g_A = 1.27$	
46 Sc(4 ⁺) \rightarrow 46 Ti(2 ⁺)	6.38×10 ³ y	2.68×10 ³ y	1.93×10 ³ y	3.26×10 ³ y	2.02×10 ³ y	
${}^{59}\text{Fe}(3/2^-) \rightarrow {}^{59}\text{Co}(7/2^-)$	0.67×10 ² y	1.18×10 ² y	2.82×10 ² y	2.21×10 ² y	6.93×10 ² y	

 β Spectrum of ${}^{46}Sc(4^+) \rightarrow {}^{46}Ti(2^+)$

Normalized computed electron spectra from nuclear shell model for 2nd-FNU β^- decay of ⁴⁶Sc corresponding to different values of g_A (g_V =1.00).

 β Spectrum of ⁵⁹Fe(3/2⁻) \rightarrow ⁵⁹Co(7/2⁻)

Normalized computed electron spectra from nuclear shell model for 2nd-FNU β^- decay of ⁵⁹Fe corresponding to different values of g_A (g_V =1.00).

spectrum of 87 Rb $(3/2^-) \rightarrow {}^{87}$ Sr $(9/2^+)$ B

Normalized computed electron spectra from nuclear shell model for 2nd-FNU β^- decay of ⁸⁷Rb corresponding to different values of g_A (g_V =1.00).

Results for ²⁴Na and ³⁶Cl

Including only leading-order (LO) terms in the shape factor.

Anil Kumar, P. C. Srivastava, J. Kostensalo, and J. Suhonen (In preparation).

Nuclear Matrix Elements of ³⁶Cl

	³⁶ Cl(2 ⁺)-	$\rightarrow^{36} \text{Ar}(0^+)$
	USDB	DJ16A
${}^{V}\mathcal{M}^{(0)}_{211}$	0	0
$^{V}\mathcal{M}_{211}^{(0)}(\mathbf{CVC})$	-0.029375 ± 0.0005	-0.015943±0.0010
${}^{V}\mathcal{M}^{(0)}_{220}$	-5.892542	-3.483430
${}^{V}\mathcal{M}_{220}^{(0)}(1,1,1,1)$	-7.250832	-4.357072
${}^{V}\mathcal{M}_{220}^{(0)}(2,1,1,1)$	-6.955989	-4.195245
${}^{A}\mathcal{M}^{(0)}_{221}$	-1.249043	-2.025348
${}^{A}\mathcal{M}_{221}^{(0)}(1,1,1,1)$	-1.496326	-2.412741
${}^{A}\mathcal{M}_{221}^{(0)}(2,1,1,1)$	-1.426626	-2.297321

Nuclear Matrix Elements of ²⁴Na

	24 Na(4 ⁺)-	$\rightarrow^{24}Mg(2^+)$
	USDB	DJ16A
${}^{V}\mathcal{M}^{(0)}_{211}$	0	0
$^{V}\mathcal{M}_{211}^{(0)}(\mathbf{CVC})$	$0.023790 {\pm} 0.0001$	-0.018446±0.0002
$^{V}\mathcal{M}_{220}^{(0)}$	-0.431273	-0.131891
${}^{V}\mathcal{M}_{220}^{(0)}(1,1,1,1)$	-0.530979	-0.123441
${}^{V}\mathcal{M}_{220}^{(0)}(2,1,1,1)$	-0.509588	-0.110404
${}^{A}\mathcal{M}^{(0)}_{221}$	-0.430287	-0.482638
${}^{A}\mathcal{M}_{221}^{(0)}(1,1,1,1)$	-0.524687	-0.577264
${}^{A}\mathcal{M}_{221}^{(0)}(2,1,1,1)$	-0.502493	-0.550486
${}^{A}\mathcal{M}^{(0)}_{321}$	-1.459626	-0.758772

For the calculations of the log ft values, we have used the bare value of weak coupling constants $g_A = 1.27$ and $g_V = 1.00$.

	$\log ft(SM)$		
	USDB	DJ16A	Expt
$^{36}\text{Cl}(2^+) \rightarrow ^{36}\text{Ar}(0^+)$	12.635	13.978	13.321(3)
24 Na(4 ⁺) \rightarrow ²⁴ Mg(2 ⁺)	12.237	12.881	11.340(4)
	lo	gft(SM+0	CVC)
	USDB	DJ16A	Expt
	10.001	12 100	12 221(2)
$^{36}\text{Cl}(2^+) \rightarrow ^{36}\text{Ar}(0^+)$	13.221	13.108	15.521(5)

β Spectrum of ${}^{36}\text{Cl}(2^+) \rightarrow {}^{36}\text{Ar}(0^+)$

Experimental Data \rightarrow H. Rotzinger *et. al.*, J Low Temp Phys **151**, 1087 (2008).

β Spectrum of 24 Na $(4^+) \rightarrow {}^{24}$ Mg (2^+)

IIT ROORKEE 17/19

- Use the established and well-tested Hamiltonians to calculate the nuclear matrix elements for all transitions.
- Study of high-forbidden non-unique β^- decays (⁴⁶Sc, ⁵⁹Fe, and ⁸⁷Rb) with including next-to-leading-order terms in the shape factors.
- The shape of β spectrum changes with the axial-vector coupling constant g_A .
- The shape factor and electron spectra of the β^- decay for ³⁶Cl and ²⁴Na strongly depend on the matrix element ${}^V\mathcal{M}_{211}^{(0)}$.
- For ²⁴Na, there is no experimental data available for the shape factor and the electron spectra. Thus, our theoretical results might be very useful for comparison in the future experiments.

Thank You

