

European Research

The CROSS Experiment: Rejecting Surface Events with PSD

Hawraa Khalife on behalf of the CROSS collaboration 3rd year PhD student @ IJCLab (Orsay, France) 25/02/2020

Neutrinoless double beta decay

1

Double beta decay:

 $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\bar{\nu}_e$

- Allowed in the standard model for 35 nuclei (observed for 11 nuclei: ⁷⁶Ge,⁸²Se,¹⁰⁰Mo,¹¹⁶Cd,¹³⁰Te...)
- Rarest observed nuclear decay: $T_{1/2} \sim 10^{18} 10^{24} \text{ yr}$

Neutrinoless double beta decay:

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-}$

- Forbidden in the standard model:
 - lepton number violation
- $v = \overline{v}$ (Majorana particle)
- $T_{1/2} > 10^{26} \text{ yr}$

Bolometric technique

Bolometer

is a low temperature calorimeter which detects particle interaction via a small temperature rise following phonon production in the absorber.

Features

- High energy resolution
- ββ source-embedded detectors
- Full active volume (no dead layer)
- Particle identification capability (hybrid or surface sensitive detectors)
- Flexible material choice (Li₂MoO₄, ZnMoO₄, CaMoO₄, TeO₂, ...)

As in CUORE: Cryogenic Underground Observatory for Rare Events not a zero background experiment (surface α 's & β 's)

Check CUORE talk by Giovanni Benato

Bolometric detectors

Bolometer

is a low temperature calorimeter which detects particle interaction via a small temperature rise induced by phonons production in the lattice of the absorber

Features

- High energy resolution
- ββ source-embedded detectors
- Full active volume (no dead layer)
- Particle identification capability (hybrid or surface sensitive detectors)
- Flexible material choice (Li₂MoO₄, ZnMoO₄, CaMoO₄, TeO₂, ...)

CUPID (CUORE Upgrade with Particle IDentification) adopts a method
to reject surface α events in bolometers exploiting the scintillation $(Li_2^{100}MoO_4)$ or Cherenkov radiation ($^{130}TeO_2$) emitted by the absorber,
since $\alpha & \beta/\gamma$ have different light yield.

CROSS proposes a technique to mitigate surface contamination (α's & β's) via providing bolometers with surface sensitivity
→ no light detector is needed

Large scale experiments sensitivity

CROSS Overview

- Main Objective: Rejection of surface events due to surface contamination
 - Effective pulse shape discrimination (PSD) capability
 - The surface sensitivity is achieved by Superconducting Al coating
- Two promising bolometers are used: $\text{Li}_2^{100}\text{MoO}_4$ and $^{130}\text{TeO}_2$

How PSD happens?

CROSS above-ground prototypes

Heater: injects power periodically to be able to stabilize the bolometric performance offline.

2×2×1 cm ³	\emptyset 4×2 cm ³	2×2×1 cm ³
12 g	67 g	25 g
10 μ m Al	10 μ m Al	1 μ m Al
53 nV/keV	37 nV/keV	44 nV/keV

2 main alpha lines at 4.2 MeV and 4.7 MeV

Results

Li_2MoO_4 with Palladium film

In principle, a normal metal should be a better thermalizer for athermal phonons than a superconductor

20×20×10 mm³ Li₂MoO₄ + light detector 10 nm thin Pd film faced by a uranium α source (nm thickness to reduce specific heat capacity of Pd)

But, a fully Pd-coated crystal showed a big drop in sensitivity which affected PSD due to the high heat capacity

CROSS Demonstrators

First demonstrator: hybrid CUPID-CROSS technology

- 8 Li_2^{100} MoO₄ crystals: 4 Al-coated crystals coating on four sides
- Coupled to light detectors to test the effect of Al film on the light collection
- First results: April 2020 at CROSS facility at LSC (Canfranc, Spain)

Future demonstrator

- $32 \text{ Li}_2^{100}\text{MoO}_4$ crystals (4.7 kg of enriched ¹⁰⁰Mo (>95%) corresponding to $2.9 \times 10^{25} \text{ }^{100}\text{Mo}$)
- The planned date of the run: 2021 at CROSS facility at LSC

This will test CROSS technique with high statistics and prove the stability and the reproducibility of the CROSS methods

Background level [counts / (keV kg y)]	Live time [y]	Lim T _{1/2} [y] (90% c.l.)	Lim m _{ββ} [meV] (90% c.l.)
10-2	2	8.5×10 ²⁴	124-222
10-3	2	1.2×10^{25}	103-185
10-2	5	1.7×10^{25}	88-159
10-3	5	2.8×10 ²⁵	68-122

Conclusions

- Next generation 0v2β searches with cryogenic detectors require an active rejection of surface contamination induced background.
- > Most of the present active R&Ds are devoted to the developments of heat-light dual read-out bolometers for $0v2\beta$ searches.
- CROSS demonstrated the capability of bolometers to reject near surface interaction exploiting surface coating of superconducting Al or normal metal Pd films.
- > Further R&D to reject surface β s. (Pd grid to reduce the heat capacity or another solution?)
- CROSS 32 crystals demonstrator will not only develop a new technique for PSD, but also it will compete with the current experiments.

References:

I.C. Bandac et al., *JHEP 01, 018* (2020). https://doi.org/10.1007/JHEP0 1(2020)018 H. Khalife *et al., J Low Temp Phys* (2020). https://doi.org/10.1007/s10909-020-02369-7

Thank you for your attention

Backups

This test was performed to check the intrinsic properties of the crystal:

- Sensitivity
- Energy resolution
- Pulse shape discrimination

Closer view on a pulse-shape difference (Li_2MoO_4)

LMO at 15.5 mK risetime

- 1- alphas that deposited all of its energy in Al film
- 2- alphas that deposited partially its energy in Al
- 3- degraded alphas that lost some of its energy before reaching Al film
- 4- neutron capture close to Al film

NbSi & NTD on TeO₂

Opposite behavior of NbSi and NTD on the same crystal!

NbSi film (insulator):

Deposited directly on the crystal over a large surface, making them sensitive to the prompt **athermal** component of the phonon population produced by the impinging particle

CROSS detector

Athermal phonons are immediately produced after particle interaction in the crystal, and then they evolve toward thermal phonons

NTD (neutron-transmutation-doped):

NTDs are sensitive rather to the **thermal** component due to their intrinsic slowness and the glue interface.

*J Low Temp Phys (2012) 167:1029–1034

Particle identification parameters

CUPID goals and background projection

- Crystals:
 - U/Th bulk → from CUPID-0
 - \circ U/Th surface \rightarrow from CUORE bkg-model
 - \circ 2vββ pile-up (T_{1/2}^{2v} = 7.1x10¹⁸ yr)
- Crystal holders
 - U/Th surface → CUPID-0 bkg-model
- Cryogenic infrastructure and shielding
 - U/Th bulk → CUORE bkg-model
- Muons → Cut by muon veto

Goals

- ~1500 $\text{Li}_2^{100}\text{MoO}_4$ scintillating crystals (~250 kg of ^{100}Mo)
- Goal FWHM: 5 keV at Q_{ββ}
- α rejection via PID
- Goal background: 10⁻⁴ counts/keV/kg/yr
- Discovery sensitivity: $T_{1/2}^{0v} = 10^{27}$ yr

CNNP2020