

Sensitivity to the neutrinoless double beta decay of the DARWIN Observatory

Patricia Sanchez-Lucas, Universität Zürich

on behalf of the DARWIN Collaboration

CNNP2020 Cape Town, 24-28 February 2020

www.darwin-observatory.org

WIMP DETECTION LANDSCAPE TODAY

- The highest sensitivity above 2 GeV/c² comes from experiments using liquid noble gases as target (Xe, Ar). (heavy target and easy scalability)
- DARWIN, the ultimate LXe WIMP detector, with 50t of total mass, plans to increase 100-fold the current sensitivity.

WIMP DETECTION LANDSCAPE TODAY

- The highest sensitivity above 2 GeV/c² comes from experiments using liquid noble gases as target (Xe, Ar). (heavy target and easy scalability)
- DARWIN, the ultimate LXe WIMP detector, with 50t of total mass, plans to increase 100-fold the current sensitivity.

DARWIN BASELINE DESIGN

baseline design with PMTs but several alternatives under consideration

- Dual-phase Time Projection Chamber (TPC).
- 50t total (40t active) of liquid xenon (LXe).
- Dimensions: 2.6 m diameter and 2.6 m height.
- Two arrays of photosensors (top and bottom).
- 1910 PMTs of 3" diameter.
- Low-background double-wall cryostat.
- PTFE reflector panels & copper shaping rings.
- Outer shield filled with water (12 m diameter).

Possible realization of DARWIN inside the water tank

DUAL-PHASE XENON TPC

Particle interactions Dual phase TPC working principle Detection of the scintillation light (S1) and the delayed electron recoil gammas & escintillation light proportional to the charge (S2) (**ER**) WIMPs or GXe neutrons electron recoil time nuclear Top array of photosensors (ER) recoil (NR) + anode le **S2** nuclear gate recoil (NR) ╧ The ratio S2/S1 depends on the Ēd drift time interacting particle. (depth) ∣ e⁻e⁻ e⁻ Particle type discrimination KS1 S1 cathode background ER (β,γ) Bottom array of photosensors LXe NR (WIMP, n) signal The dual-phase TPC allows for a 3D **S1 S2**

position reconstruction.

x-y from the light sensors, z from the drift time

THE VARIETY OF PHYSICS CHANNELS

THE VARIETY OF PHYSICS CHANNELS

WHY LOOK FOR THE $0\nu\beta\beta$ DECAY WITH DARWIN ?

DARWIN offers the possibility of looking for this rare process for FREE

- ¹³⁶Xe excellent candidate:
 - Abundance of 8.9% in natural Xe.
 - Q-value = 2.458 MeV (above the ROI of WIMPs)
- DARWIN will have more than 3.5 t of active ¹³⁶Xe.
- Expected energy resolution < 1% at 2.5 MeV

- Already demonstrated by XENON1T C. Wittweg talk, yesterday

- Ultra-low background environment dominated by intrinsic backgrounds:
 - = 222 Rn, $2\nu\beta\beta$ decays of 136 Xe
 - solar ⁸B neutrinos
 - ¹³⁷Xe from cosmogenic activation underground

DEDICATED SIMULATIONS: DARWIN GEOMETRY

Simulation criteria

Detailed detector geometry in Geant4 following the baseline design

all the major components have been included

Based on engineering studies at Nikhef

MATERIAL/EXTERNAL BACKGROUNDS:

all the major components have been included

		Element	Material
	top sensor array	Outer cryostat	Ti
	(955 PMTs, electronics,	Inner cryostat	Ti
outer cryostat	copper + PTFE panels)	Bottom pressure vessel	Ti
inner cryostat —	top electrode	LXe instrumented target	LXe
	frames (Titanium)	LXe buffer outside the TPC	LXe
field cage		LXe around pressure vessel	LXe
(copper, 92 rings)	— TPC reflector	GXe in top dome + TPC top	GXe
support structure	(PTFE, 24 panels)	TPC reflector (3mm thickness)	PTFE
(PTFE, 24 pillars)		Structural support pillars (24 units)	\mathbf{PTFE}
	bottom electrode	Electrode frames	Ti
	frames (Titanium)	Field shaping rings (92 units)	Copper
		Photosensor arrays (2 disks):	
	bottom sensor array	Disk structural support	Copper
		Reflector $+$ sliding panels	\mathbf{PTFE}
	pressure vessel	Photosensors: 3"PMTs (1910 Units)	$\operatorname{composite}$
		Sensor electronics (1910 Units)	$\operatorname{composite}$

Assumed activity levels → Conservative

upper limits as detection values

- LZ, Astropart. Phys. **96** (2017) 01 - XENON, Eur. Phys. J. C **77** (2017) 12 890

Material	Unit	$^{238}\mathrm{U}$	226 Ra	$^{232}\mathrm{Th}$	$^{228}\mathrm{Th}$	$^{60}\mathrm{Co}$	$^{44}\mathrm{Ti}$	Reference
Titanium	$\mathrm{mBq/kg}$	<1.6	< 0.09	0.28	0.25	< 0.02	<1.16	LZ
PTFE	$\mathrm{mBq/kg}$	< 1.2	0.07	$<\!0.07$	0.06	0.027	-	XENON
Copper	m mBq/kg	< 1.0	$<\!0.035$	< 0.033	< 0.026	< 0.019	-	XENON
PMT	$\mathrm{mBq/unit}$	8.0	0.6	0.7	0.6	0.84	-	XENON
Electronics	$\mathrm{mBq/unit}$	1.10	0.34	0.16	0.16	< 0.008	-	XENON

 $\begin{array}{c} {\rm Mass} \\ 3.04 \, {\rm t} \\ 2.10 \, {\rm t} \\ 0.38 \, {\rm t} \\ 39.3 \, {\rm t} \\ 9.00 \, {\rm t} \\ 0.27 \, {\rm t} \\ 30 \, {\rm kg} \\ 146 \, {\rm kg} \\ 84 \, {\rm kg} \\ 120 \, {\rm kg} \\ 680 \, {\rm kg} \end{array}$

520 kg 70 kg 363 kg

 $5.7 \,\mathrm{kg}$

COMPONENTS OF THE MATERIAL BACKGROUNDS

ER background spectra (single site events) for some materials with no fiducialization

DARWIN

➢ long-lived radiogenic nuclei, ²³⁸U, ²³²Th, ²³⁵U, ⁶⁰Co, ¹³⁷Cs, ⁴⁴Ti

DEFINITION OF A FIDUCIAL VOLUME

Distribution of the external background events in the detector volume

100 years of DARWIN run time, events with energy in the ROI

MATERIAL BACKGROUND: ZOOM AROUND Q-value

- ¹³⁷Xe decays into ¹³⁷Cs and this one in ¹³⁷Ba (stable).

INTRINSIC BACKground uniformly distributed in the detector volume.

222Rn in the LXe:

- Assumption: 0.1 µBq/kg
- 10 times lower than XENONnT
- 99.8 % BiPo tagging efficiency

Irreducible ⁸B solar neutrinos ($v-e \rightarrow v-e$):

- $\phi_{\nu e} = 5.46 \text{ x } 10^6 \text{ cm}^{-2} \text{ s}^{-1}$
- $P_e = 0.50$
- 2vbb decay of ¹³⁶Xe.
 - Subdominant due to the energy resolution
- ¹³⁷Xe from cosmogenic activation underground:
 - Potential background for a depth of 3500 m.w.e
 - Dedicated simulations of muon-induced neutrons

n + ¹³⁶Xe -> ¹³⁷Xe

INTRINSIC BACKGROUNDS: ZOOM AROUND Q-value

Sitting DARWIN at LNGS, the intrinsic backgrounds will be dominated by the ¹³⁷Xe

Looking for the optimal fiducial mass:

Looking for the optimal fiducial mass:

Minimize background without penalizing the exposure

$$T_{1/2}^{0\nu} \propto \frac{\sqrt{Mt}}{\sqrt{B\Delta E}}$$

TOTAL BACKGROUND FOR 5t FV

The hypothetical $0\nu\beta\beta$ signal in the plot has a strength of 0.5 events/y (T_{1/2}~2×10²⁷ years)

Less than 1 event per year in the ROI !!

EXPECTED SENSITIVITY FOR THE BASELINE DESIGN

Profile likelihood analysis for the sensitivity:

DARWIN will reach a sensitivity at 90% C.L of 2.4×10²⁷ years for a 5t × 10 year exposure

⁻ EXO-200 Collaboration, Phys. Rev. Lett. 120, 072701 (2018)

⁻ KamLAND-Zen Collaboration, Phys. Rev. Lett. 117, 082503 (2016)

IMPROVED SCENARIOS

- Baseline scenario not optimised for 0vbb
- Pre-achieved radio-purity of materials

What could be improved?

Reduce external background

- top array of SiPMs
- bottom array of cleaner PMTs
- identify cleaner materials (PTFE, Ti)
- cleaner electronics

2) Reduce internal background

- time veto for the ¹³⁷Xe
- deeper lab

3

- better BiPo tagging technics

Improve signal/background discrimination

ROOM FOR IMPROVEMENT !!

DARWIN could reach a sensitivity of 6×10²⁷ years

- **DARWIN** will be the ultimate dark matter detector. In addition, its large mass and ultra low background makes it an excellent detector to look for the $0v\beta\beta$ decay of ¹³⁶Xe.
- Expected energy resolution of ~0.8% at 2.5 MeV
- Dedicated simulations of the material background: Contribution at the ROI of the 0vbb dominated by the PMTs and the cryostat:
 - Other photosensors under investigation,
- Dedicated simulations of the intrinsic backgrounds: The ¹³⁷Xe will be the main contribution for a depth of 3500 m.w.e.
- A statistical analysis provides a sensitivity at 90% C.L of 2.4×10²⁷ years for 5t ×10 year exposure for the baseline design.
 - Still room for improvement: in a progressive scenario DARWIN can be comparable to dedicated experiments

BACK UP

IMPROVED SCENARIOS

- Baseline scenario not optimised for 0vbb
- Pre-achieved radio-purity of materials

What could be improved?

- Reduce external background
- top array of SiPMs
- bottom array of cleaner PMTs
- identify cleaner materials (PTFE, Ti)
- cleaner electronics

2) Reduce internal background

- time veto for the ¹³⁷Xe
- deeper lab

3

better BiPo tagging technics

Improve signal/background discrimination

ROOM FOR IMPROVEMENT !!

DARWIN could reach a sensitivity of 6×10²⁷ years

DOUBLE BETA DECAY: SOME THEORY

Neutrinoless double beta decay $(0\nu\beta\beta)$

Extremely rare nuclear process, NEVER OBSERVED BEFORE

> Lepton number violation

> Neutrinos are their own anti-particle (Majorana fermions)

DOUBLE BETA DECAY: SOME THEORY

Neutrinoless double beta decay $(0\nu\beta\beta)$

Extremely rare nuclear process, NEVER OBSERVED BEFORE

 \succ The inverse of the half-life is:

SIGNAL TOPOLOGY IN LIQUID XENON

Treat the 0vbb signal as a single-site (SS) events

- Not always true if e⁻ emits Bremsstrahlung photons that travel some distance
- Events misidentified as MS and rejected
- We use $\varepsilon = 15$ mm for SS/MS identification
 - 90% efficiency for 0vbb events (equal share)

EXTERNAL BACKGROUND: ANALYTIC MODEL

- Understanding of the backgrounds we have in the ROI
- Prediction of the background rate for very smaller fiducial volumes
- Model-derived uncertainty (for 5t FV) is a factor 4 lower than Poissonian errors

Background induced by gammas → contributions in the ROI from 3 different isotopes

BACKGROUND INDEX IN THE ROI [2435-2481 keV]

Background source	Background index	Rate	Rel. uncertainty
	$[events/(t \cdot yr \cdot keV)]$	[events/yr]	
External sources (5 t FV):			
214 Bi peaks + continuum	1.36×10^{-3}	0.313	$\pm 3.6\%$
208 Tl continuum	$6.20 imes 10^{-4}$	0.143	$\pm 4.9\%$
44 Sc continuum	4.64×10^{-6}	0.001	$\pm 15.8\%$
Intrinsic contributions:			
$^{8}\mathrm{B} (\nu - e \text{ scattering})$	$2.36 imes 10^{-4}$	0.054	+13.9%, -32.2%
¹³⁷ Xe (μ -induced <i>n</i> -capture)	1.42×10^{-3}	0.327	$\pm 12.0\%$
136 Xe $2\nu\beta\beta$	5.78×10^{-6}	0.001	+17.0%, -15.2%
^{222}Rn in LXe $(0.1\mu\text{Bq/kg})$	3.09×10^{-4}	0.071	$\pm 1.6\%$
Total:	$3.96 imes10^{-3}$	0.910	+4.7%, -5.0%

Uncertainties from the analytic model

 $B = 0.91 \pm 0.05 \text{ events/yr}$

Less than 1 event per year!!

HOW IS ¹³⁷Xe PRODUCED?

¹³⁷Xe is mainly produced when **muon-induced neutrons** are captured by ¹³⁶Xe.

Radiogenic neutrons can also contribute (negligible contribution)

Cosmic Muons \Rightarrow Fast Neutrons \Rightarrow Thermalize by collision \Rightarrow Neutron Capture

- Flux reduction underground: 10⁶ times (LNGS).
- High energy muons (GeV) can reach the lab.
- Muons produce neutrons when they travel through the rock, the shields, the cryostat and the detector itself.
- Once thermalized by collisions, the neutrons are captured in LXe.

Neutron capture gammas are not a problem because they occur in coincidence with a tag muon

SIMULATION OF THE ¹³⁷Xe PRODUCTION RATE

Simulations of the muon-induced neutrons in the DARWIN materials

- Input (1): muon simulations for the LNGS depth
- Input (2): muon-induced neutrons distributions for the different materials
- Neutrons following a power law energy spectrum.
- Simulation of the neutrons and propagate them until the LXe active volume.
- Count number of ¹³⁶Xe neutron captures.

Material	Volume in DARWIN [m ³]	n Production Rate in DARWIN [n/year]	Sim. Events	¹³⁷ Xe isotopes	¹³⁷ Xe Production Rate [atoms/kg/year]
Copper	0.076	1.12×10 ⁴	10 ⁶	234 ± 15	(6.7 ± 0.4)×10⁻⁵
Cryostat	1.076	1.32×10⁵	10 ⁶	89 ± 9	(2.9 ± 0.3)×10 ⁻⁴
LXe	19.976	1.02×10 ⁶	106	252 ± 16	(6.5 ± 0.4)×10 ⁻³
Total		1.16×10 ⁶			(6.9 ± 0.4)×10 ⁻³

¹³⁷Xe PRODUCTION RATE: COMPARISON

The production rate of ¹³⁷Xe, dominated by the muon-induced neutrons, depends on the depth our the underground lab

Experiment	Location	Depth [m.w.e]	Muon flux [1/s/cm²]	¹³⁷ Xe Production Rate [atoms/kg/year]
EXO-200[3]	WIPP	1600	~4×10 ⁻⁷	2.95
DARWIN	LNGS	3600	~2×10 ⁻⁸	7.71×10 ⁻²
nEXO [4]	SNOLAB	6011	~4×10 ⁻¹⁰	2.44×10 ⁻³

values normalized per kg of ¹³⁶Xe

> Our result is consistent with the values given by EXO-200 and nEXO

> The Xe137 production rate behaves as expected, scaling with the muon flux

[3] EXO-200, JCAP 1604 (2016) 029
[4] nEXO, Phys. Rev. C 97, 065503 (2018)

BACKGROUND PREDICTIONS

Two different backgrounds

Electronic Recoils

- γ -rays from materials
- Intrinsic backgrounds (⁸⁵Kr, ²²²Rn, ¹³⁶Xe)
- Low energy solar neutrinos (pp, ⁷Be)

Nuclear Recoils

- Coherent v-N scattering (irreducible)
- Neutrons from the materials
- Cosmogenic and radiogenic (lab) neutrons (reduced by overburden, veto and fiducialisation)

Background contribution before ER discrimination

		Source	Rate	
			$[\mathrm{events}/(\mathrm{t}{\cdot}\mathrm{y}{\cdot}\mathrm{keV})]$)]
		γ -rays materials	0.054	
		neutrons*	3.8×10^{-5}	
		intrinsic ⁸⁵ Kr	1.44	
r		intrinsic 222 Rn	0.35	
Z		$2\nu\beta\beta$ of ¹³⁶ Xe	0.73	
		pp- and $^7\mathrm{Be}~\nu$	3.25	
		CNNS*	0.0022	

ER = 5.824 events/(t · y · keV_{ee}) lower than current experiments

SENSITIVITY TO WIMPS

minimum: 2.5x10⁻⁴⁹ cm² at 40 GeV/c²

SOLAR NEUTRINOS

The precise measurement of pp- neutrinos will test the main energy production mechanisms in the Sun

0.75

0.70

0.65

0.45

0.40

0.35

- pp- neutrinos are \sim 92% of the solar neutrino flux (SSM)
- Detection through neutrino-electron elastic scattering

$$\nu_x + e \longrightarrow \nu_x + e$$

- Real-time measurement of the neutrino flux: $361 \text{ events}/(t \times y)$ (whole energy range above 2keV_{ee})
- Flux with 2% statistical precision after 1 year
- Measurement of electron neutrino survival probability (Pee) and the neutrino mixing angle below 300 keV.

COHERENT NEUTRINO NUCLEUS :

AXION AND AXION-LIKE PARTICLES

• Main backgrounds: irreducible solar neutrinos & $2\nu\beta\beta$ of ¹³⁶Xe.

ONGOING R&D: DEMONSTRATORS

DARWIN full-length demonstrator

The main goal is the demonstration of the electron drift over the full height of DARWIN

DARWIN full-(x,y) scale demonstrator

The main goal is to test components at real diameter under real conditions

x-y homogeneity of the drift field

