

Istituto Nazionale di Fisica Nucleare

BBN, Nuclear Astrophysics and neutrinos

Carlo Gustavino INFN Roma For the LUNA Collaboration

Solar neutrinos

Cosmic Neutrino Background (CNB)

CNNP, 24-28 February 2020, Cape Town, South Africa

Introduction

Nuclear reactions are responsible for the Big Bang Nucleosynthesis and determine the evolution and fate of celestial bodies

- **Big Bang Nucleosynthesis**
- Evolution and fate of stars

- Cosmology
- **Astrophysics**
- **Particle Physics**
- Theoretical nuclear physics

10 log (T_c) 8 H-ignition 2 10 0 6 8 $\log (\rho_c)$ For a 15 M_{sun} star: Reaction Timescale Hydrogen burning 10 million years 1 million years Helium burning Carbon burning 300 years Oxygen burning 200 days Silicon burning 2 days

C.Gustavino

Why Underground Measurements?

$$\langle \sigma v \rangle = \sqrt{\frac{8}{\pi \mu}} (k_{\rm B}T)^{-3/2} \int_0^\infty \sigma(E) E \exp[-E/k_{\rm B}T] dE$$

Measurements at low energies

Low cross sections because of the Coulomb barrier

→Underground accelerator to reduce the background induced by Cosmic Rays

C.Gustavino

Background @ Gran Sasso

Passive shielding is more effective underground since the μ flux, that create secondary γ s, is suppressed.

Laboratori Nazionali del Gran Sasso (LNGS)

LUNA M

2020→

Background reduction with respect to Earth's surface: $\mu \sim 10^{-6}$

 $\gamma \sim 10^{-2} - 10^{-5}$ neutrons ~ 10^{-3}

LUNA 50 kV 1991-2001

> LUNA 400 kV 2000→...

LUNA 50 kV

1991: Birth of underground Nuclear Astrophysics. Thanks to E. Bellotti, C. Rolfs and G. Fiorentini

Claus Rolfs

Goal: Understanding the hydrogen burning in the Sun through the study of the ³He(³He,2p)⁴He reaction at low energies

SSM and the Solar Neutrino deficit

1.E+12

p-p chain

As suggested by Fowler, a natural way to explain the observed neutrino deficit could be due to a narrow resonance inside the unexplored ³He+³He solar gamow peak

C.Gustavino

SSM and the Solar Neutrino deficit

p-p chain

As suggested by Fowler, a natural way to explain the observed neutrino deficit could be due to a narrow resonance inside the unexplored ³He+³He solar gamow peak

C.Gustavino

SSM and the Solar Neutrino deficit

1.E+12

p-p chain

As suggested by Fowler, a natural way to explain the observed neutrino deficit could be due to a narrow resonance inside the unexplored ³He+³He solar gamow peak

C.Gustavino

p-p chain

As suggested by Fowler, a natural way to explain the observed neutrino deficit could be due to a narrow resonance inside the unexplored ³He+³He solar gamow peak

C.Gustavino

³He(³He,2p)⁴He reaction

-First measurement below the Gamow peak

 $-\sigma(16,5 \text{ keV})=20\pm10 \text{ fb}$ 2 events/month!!

-No evidence for a narrow resonance \rightarrow SSM validation

 \rightarrow second generation of experiments (Borexino, Kamland, SNO) addressed to prove the neutrino oscillation (and to measure the neutrino mixing parameters).

LUNA 400: experiment overview

LUNA 400 kV

 $E_{beam} \approx 50 - 400 \text{ keV}$ I max $\approx 300 \text{ }\mu\text{A} \text{ protons},^{4}\text{He}$ Energy spread $\approx 70 \text{ eV}$

• ¹⁴N(p,γ)¹⁵O

- ³He(⁴He,γ)⁷Be
- ²⁵Mg(p,γ)²⁶Al
- ¹⁵N(p,γ)¹⁶O
- ¹⁷O(p,γ)¹⁸F
- ²H(⁴He,γ)⁶Li
- ²²Ne(p,γ)²³Na
- ²H(p,γ)³He
- ¹³C(α,n)¹⁶O
- ${}^{12,13}C(p,\gamma){}^{13,14}N$
- ²²Ne(α,γ)²³Na

- (Sun,CNO-I cycle)
- (Sun, BBN)
- (Mg-Al Cycle)
 - (CNO-II Cycle)
 - (CNO-III Cycle)
 - (BBN)
 - (Ne-Na Cycle)
 - (BBN)
 - (s-process)
 - (¹²C/¹³C ratio)
 - (s-process)

Mixing parameters of solar neutrinos Temperature and metallicity of Sun Stellar evolution Universal chemical composition Age of Universe Cosmology Theoretical Nuclear physics

Big Bang Nucleosynthesis

BBN is the result of the competition between the relevant nuclear processes and the expansion rate of the early universe:

$$H^2 = \frac{8\pi}{3}G\rho$$

$$\rho = \rho_{\gamma} \left(1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\text{eff}} \right)$$

Calculation of primordial abundances only depends on: -Baryon density Ω_b -Particle Physics (N_{eff}, α ...) -Nuclear Astrohysics, i.e. Cross sections of relevant processes at BBN energies

$D(p,\gamma)^{3}$ He reaction @ LUNA400

Reaction	Δ (D/H) _{BBN} /(D/H) _{BBN}
$\mathrm{p}(\mathrm{n},\gamma)\mathrm{D}$	0.08%
$D(p, \gamma)^3$ He	2.34%
$D(d, n)^3 He$	0.75%
$D(d,p)^{3}H$	0.49%

(Di Valentino, C.G. et al. 2014)

- The error budget of computed abundance of deuterium is mainly due to the D(p,γ)³He reaction
- measurements (9% error) NOT in agreement with recent "Ab-Initio" calculations.

Measurement goal:

- Cross section measurement at 30<E_{cm}[keV]<270 with ~ 3% accuracy
- Differential cross section measurement at 50<E_{cm}[keV]<270

Physics:

- Cosmology: measurement of Ω_b
- Neutrino physics: measurement of N_{eff}
- Nuclear physics: comparison of data with "ab initio" predictions

C.Gustavino

$D(p,\gamma)^{3}$ He reaction @ LUNA400

 $100\Omega_{b,0}h^2(CMB)=2.236\pm0.015$ (PLANCK2019)

$D(p,\gamma)^{3}$ He reaction @ LUNA400

H/C

 $100\Omega_{b,0}h^{2}(BBN)=2.235\pm0.033\pm0.016 \text{ (Cooke2018)} \\100\Omega_{b,0}h^{2}(BBN)=2.166\pm0.011\pm0.015 \text{ (Cooke2018)} \\ \uparrow \qquad \uparrow \qquad \uparrow \\ Dp\gamma \text{ "ab-initio"} \\ D/H \text{ observations}$

From CMB data:

100Ω_{b,0}h²(CMB)=2.236±0.015 (PLANCK2019)

Deuterium abundance also depends on the density of relativistic particles, (photons and 3 neutrinos in SM). Therefore it is a tool to constrain "dark radiation".

Assuming literature data for the $D(p,\gamma)^{3}$ He reaction: N_{eff} (BBN) = 3.57±0.18 (Cooke&Pettini 2013) N_{eff} (CMB) = 2.89±0.37 (PLANCK 2019) N_{eff} (SM) = 3.046

$D(p,\gamma)^{3}$ He reaction: setup

C.Gustavino

Systematics: Beam Current

$$\sigma(E) = \int_0^L \frac{N_{\gamma} \cdot e}{t \cdot I_{beam} \cdot \rho(z) \cdot \varepsilon(z)} W(\vartheta(z)) dz$$

HPGe Source	Method
BEAM CURRENT	Calibration with Faraday cup
TEMPERATURE PROFILE	Direct Measurement
PRESSURE PROFILE	Direct Measurement
BEAM HEATING	Rate Vs Current measurement
DETECTOR EFFICIENCY	Calibration with ${}^{14}N(p,g){}^{15}O$ reaction
ANGULAR DISTRIBUTION	Peak Shape Analysis

Constant temperature gradient calorimeter

LUNA 400: the D(p, γ)³He reaction

Systematics: Target Density

$$\sigma(E) = \int_0^L \frac{N_{\gamma} \cdot e}{t \ I_{beam} \cdot \rho(z) \cdot \varepsilon(z)} W(\vartheta(z)) \, dz$$

HPGe Source	Method	
BEAM CURRENT	Calibration with Faraday cup	
TEMPERATURE PROFILE	Direct Measurement	
PRESSURE PROFILE	Direct Measurement	
BEAM HEATING	Rate Vs Current measurement	
DETECTOR EFFICIENCY	Calibration with ${}^{14}N(p,g){}^{15}O$ reaction	
ANGULAR DISTRIBUTION	Peak Shape Analysis	

CNNP 2020

Systematics: Detector Efficiency

$$\sigma(E) = \int_0^L \frac{N_{\gamma} \cdot e}{t \ I_{beam} \cdot \rho(z) \cdot \varepsilon(z)} W(\vartheta(z)) dz$$

HPGe Source	Method	
BEAM CURRENT	Calibration with Faraday cup	
TEMPERATURE PROFILE	Direct Measurement	
PRESSURE PROFILE	Direct Measurement	
BEAM HEATING	Rate Vs Current measurement	
DETECTOR EFFICIENCY	Calibration with ${}^{14}N(p,g){}^{15}O$ reaction	
ANGULAR DISTRIBUTION	Peak Shape Analysis	

Calibration exploiting the reaction: ${}^{14}N+p \rightarrow {}^{15}O+\gamma_1+\gamma_2$

Eγ (keV)	BR (%)	
765+6791	22.9	
1384+6172	57.8	
2375+5181	17.1	

C.Gustavino

Systematics: Detector Efficiency

$$\sigma(E) = \int_0^L \frac{N_{\gamma} \cdot e}{t \ I_{beam} \cdot \rho(z) \ \varepsilon(z)} W(\vartheta(z)) dz$$

HPGe Source	Method
BEAM CURRENT	Calibration with Faraday cup
TEMPERATURE PROFILE	Direct Measurement
PRESSURE PROFILE	Direct Measurement
BEAM HEATING	Rate Vs Current measurement
DETECTOR EFFICIENCY	Calibration with ${}^{14}N(p,g){}^{15}O$ reaction
ANGULAR DISTRIBUTION	Peak Shape Analysis

Calibration exploiting the reaction: ${}^{14}N+p \rightarrow {}^{15}O+\gamma_1+\gamma_2$

Systematics: Angular Distribution

$$E_{\gamma} \neq \frac{m_p^2 + m_d^2 - m_{He}^2 + 2E_p m_d}{2(E_p + m_d + p_p \cos(\vartheta_{lab}))}$$

C.Gustavino

Total error budget

$$\sigma(E) = \int_0^L \frac{N_{\gamma} \cdot e}{t \ I_{beam} \cdot \rho(z) \ \varepsilon(z)} W(\vartheta(z)) dz$$

Source	Method	$\Delta S/S$
Beam energy	Direct measurement	$\ll 1\%$
Energy loss	Low pressure	$\ll 1\%$
T and P profiles	Direct measurement	1.0%
Beam heating	Direct measurement	0.5%
Gas purity	Data sheet	$\ll 1\%$
Beam current	Calorimeter calibration	1.0%
Efficiency	Direct measurement	2.0%
Instrumental effects	Pulser method	$\ll 1\%$
Angular distribution	Peak shape analysis	0.5%
Total		2.6%

Moreover:

- Beam induced background \rightarrow Dedicated measurements
- Instrumental bias (dead time, pile-up,..) \rightarrow Pulser method
- Energy loss→Ziegler formulae/direct measurements
- Detailed simulation to correct second order effects

$E_{cm}[keV]$	$\Delta S_{sys}/S$	$\Delta S_{stat}/S$
32.36	2.6%	3.6%
66.68	2.4%	1.4%
99.48	2.4%	0.9%
115.88	2.5%	0.9%
132.91	2.9%	0.4%
149.29	2.5%	0.5%
166.09	2.9%	0.3%
182.70	2.4%	0.4%
199.47	2.4%	0.2%
222.82	2.5%	0.3%
232.89	2.9%	0.6%
252.86	2.5%	0.6%
262.88	2.5%	0.9%

•

•

Conclusions

In recent years spectacular improvements have been reached in Cosmology. In particular:

-Cosmic baryon density $\Omega_{\rm b}$ is derived with a precision of <1% percent, thanks to the PLANCK mission.

-Primordial abundance of Deuterium D/H_{obs} is now known at ~1% from astronomical observations.

The new LUNA measurement allows to determine D/H_{BBN} with high accuracy, affected previously by the poorly known $D(p,\gamma)^{3}He$ cross section at BBN energies. Consequences of particular interest are:

- * The accurate determination of $\Omega_{\rm b}$ (BBN), assuming standard (3v) BBN.
- * The comparison of Ω_{b} (CMB) (i.e. 380.000 years after the Big Bang) and Ω_{b} (BBN) (few minutes after the birth of Universe).
- ♦ The number of neutrino families ($\Delta N_{eff}/N_{eff}$ ~7%).

...Soon a paper on the Cosmology Vs $D(p,\gamma)^{3}He$ cross section measured at LUNA.

Thanks for the attention!

Fields2019

D/H error band is mainly due to the $D(p,\gamma)^{3}$ He reaction.

Assuming literature data for the $D(p,\gamma)^{3}$ He reaction: N_{eff} (CMB) = 3.36±0.34 (PLANCK 2013) N_{eff} (BBN) = 3.57±0.18 (Cooke&Pettini 2014) N_{eff} (SM) = 3.046

PEIMBERT 2016 Yp=0.2446±0.0029 Neff=2.90±0.22

 Y_P VALUES AND PREDICTED EQUIVALENT NUMBER OF NEUTRINO FAMILIES, $\Delta N_{\nu},$ BEYOND THE SBBN

$Y_P({ m HII})$	$Y_P({ m HII+CMB})$	$\Delta N_{ u}({ m HII})$	$\Delta N_{ u}({ m HII+CMB})$	Y_P source
0.2446 ± 0.0029	0.2449 ± 0.0029	-0.16 ± 0.22	-0.14 ± 0.22	This paper
0.2449 ± 0.0040	0.2455 ± 0.0040	-0.14 ± 0.30	-0.09 ± 0.30	Aver et al. (2015)
0.2551 ± 0.0022	0.2550 ± 0.0022	$+0.63\pm0.16$	$+0.62\pm0.16$	Izotov et al. (2014)

LUNA MV

We herewith confirm that the 3.5 MV Singletron accelerator system for Laboratory Nazionale del Gran Sasso Assergi, Italy is fully assembled at HVE Amersfoort, The Netherlands.

C.Gustavino

LUNA MV

