

RED: A SIPM BASED LAR TPC FOR DIRECTIONALITY STUDIES

L. Pandola (LNS) on behalf of the ReD Working Group (DarkSide Collaboration)

Physics background darkside

- DarkSide at Gran Sasso
 Laboratory, WIMPs using search using a dual-phase TPC with lowradioactivity LAr
 - Operated a 50 kg TPC (DarkSide-50)
 - <u>Next step</u>: 20 ton LAr **TPC** (DarkSide-20k)
 - Novel light readout with SiPM
 - Getting ready for 2022, exposure O(100) ton yr
 - Expected sensitivity 10⁻⁴⁷ cm² @ M_W =1 TeV/c²
 - <u>Next-next step</u>: global worldwide effort (ARGO, 300 ton LAr)
- More sensitive to low-mass WIMP than Xe, due to the lighter target

 10^{-3}

10-4

 $M_{\chi} \frac{10^{-1}}{[\text{TeV/c}^2]}$

10

 10^{2}

Working principle of the TPC in one slide

A smoking gun for dark matter discovery

- Correlation of recoil direction with the expected direction of the WIMP galactic wind would be a smoking gun
 - Much more convincing than a mere excess of recoil events

A smoking gun for dark matter discovery

- Correlation of recoil direction with the expected direction of the WIMP galactic wind would be a smoking gun
 - Much more convincing than a mere excess of recoil events

A smoking gun for dark matter discovery

- Correlation of recoil direction with the expected direction of the WIMP galactic wind would be a smoking gun
 - Much more convincing than a mere excess of recoil events

ReD conceptual design

- Produce Ar recoils by using a suitable neutron beam
 - Can be produced via p(⁷Li,⁷Be)n
 - ⁷Li beam from the TANDEM accelerator of INFN-LNS (Catania)
 - Detect the associate particle (⁷Be) and ToF to tag neutron energy event by event (fixed by two-body kinematics)
- Detect neutrons elastically scattered off ⁴⁰Ar
 - Kinematics of (n,n') will fix energy and direction of the recoil
- Pay attention to arrange the setup such to tag nuclear recoils ~parallel and ~perpendicular to the E-field

CNNP2020, February 24th 2020

...and actual implementation at

THE INGREDIENTS

SD parameter f

The TPC

- Miniaturized version of the DarkSide-20k TPC
 - Active volume: 5(L) x 5 (W) x 6 (H) cm
 - Gas pocket: 7 mm thick
 - TPB coating for wavelength shifting
- Light readout: 5x5 cm² SiPM (as for DS-20k)
 - 24x1cm² SiPM 24 ch readout (top), for increased (x,y) resolution
 - 24x1cm² SiPM, 4 ch readout (bottom)
- Front End from the DS-20k R&D
- 3D event reconstruction:
 - (x,y) from S2 pattern on the top SiPMs
 - z from drift time (up to ~60 µs)
- ER/NR discrimination by using PSD parameter f_{prompt} on S1
 - Fast/total ratio

The Neutron Spectrometer

- Nine 3" Liquid Scintillators cells (EJ-309), readout by PMTs
 - Featuring n/γ discrimination
 - Absolute calibration with ²⁵²Cf (@LNS), ε~20-40% for neutrons between 2 and 8 MeV
 - Time resolution ~0.5 ns rms
- Arrangement within a "ring" structure

Si detectors and beam settings

- ΔE-E telescope to tag ⁷Be associated with neutrons
 - ΔE Si detector (25 µm), E Si detector (1000 µm)
 - Allows for Z separation (Li vs. Be)
 - Can be moved by a remotely-controlled stepper motor
- ⁷Li beam delivered by LNS-TANDEM: 28 MeV, CH₂ target
 - Two solutions allowed from p(⁷Li,⁷Be)n kinematics with θ_{Be}=5°
 - θ_n =22.3 deg, E_n=7.4 MeV \rightarrow TPC
- Energy/angles tuned to select ⁴⁰Ar recoils of 67 keV in the TPC
 - Other recoils energies selected by changing the beam energy only

PUTTING ALL TOGETHER

TPC Performance - 1

- Single-phe spectrum from laser
 - Single photons nicely separated
 - Effect of after-pulses and x-talk, K_{dup} = 30%
 - Digital filtering
- Light yield at null field about 9 phe/keV
 - Scintillation (S1) anticorrelated with charge (S2)
 - Relative balance changes with electric field, due to recombination
- Electron lifetime > 1 ms

Purity OK

TPC Performance - 2

- Set E_{drift} and E_{mult} independently, such to optimize
 - S1 (light) and S2 (charge) yield
 - Resolution in S1 and S2
- S1 (energy) resolution further improved by digital filtering
- E-fields set to achieve g₂ ~ 16 phe/e-
- Calibrations with laser, ²⁴¹Am, ^{83m}Kr (diffused source) and neutron DD gun

 E_{drift} = 200 V/cm, E_{mult} = 5.8 kV/cm

10

ReD run @ LNS

- Two-week run in February 2020
 - Several test beams in 2018-2019 for preparation and integration
- Successful tagging of neutron events in the TPC by using ⁷Be in the Si telescope
 - Events with a signal in the TPC
 - Correlated events + flat accidentals
 - Clear ER/NR discrimination

ReD run @ LNS

Analysis in progress

- S1 & S2 resolution
- Correction for XY-Z dependence
- pile-up, cuts
- Full three-fold coincidences
 (Si ^ TPC ^ n-Spectrometer)
 - About 150 events/day, from rough analysis
 - More, with scanning of digitized traces
- Very clean identification of events based on: ⁷Be tagging, timing and PSD (TPC and LSci)
 - ToF resolution ~1-2 ns rms

Conclusions and outlook

- ReD has a two-fold value as a physics experiment (directionality, and possibly low-energy characterization) and as a test bench for the DarkSide-20k new technologies
- Produce nuclear recoils by neutron scattering
 - Neutrons from p(⁷Li,⁷Be)n with a ⁷Li beam of 18-30 MeV
- Two-week run in February 2020 at LNS, with ⁷Li beam
 - Data analysis in progress → STAY TUNED
 - Run tailored to directionality studies
- Future studies focused to low-energy response (< few keV)
 - Lower neutron energy is more appropriate
 - LNS accelerators switched off for 2 years for major refurbishment
 - Approach based on intense ²⁵²Cf neutron source
 - Allows tagging by the detection of $\boldsymbol{\gamma}\text{-rays}$ from the fission