Ne ON Neutrino Elastic-scattering Observation with Nal Exploring coherent neutrino-nucleus scattering

Antineutrino

WIMP

χ·

CE*v***NS**

- CEvNS is a neutrino scatter off a nucleus where all target nucleons recoil in phase
- Coherence enhances the cross section depending on number of neutron

$$\sigma\approx \frac{G_F^2N^2}{4\pi}E_\nu^2$$

- Similar process as WIMP dark matter interaction
 - Irreducible background from solar neutrino for WIMP search
 - Calibrate WIMP dark matter detector with neutrino

$CE\nu NS$

Cross section is large, but tiny recoil energy

- CEvNS was observed by COHERENT at 2017
 - ✤ Csl(Na) : 14.6 kg
 - ✤ Light yield ~ 13 photoelectrons/keV_{ER}

□~1.17 photoelectrons/keV_{NR}

 $\bigstar \nu_{\mu}, \, \bar{\nu}_{\mu}$, ν_e from spallation neutron source

¹ 'ground Physics (CUP), Institute for Basic Science (IBS)

Physics potential for $CE\nu NS$

A new portal to (non)standard particle and nuclear physics ... small but multicolor !

From E. Lisi Neutrino 2018

Ne

ON

Reactor neutrinos for CEvNS

Few times $10^7/s/cm^2$ at 20 m

about $10^{13}/s/cm^2$ at 25 m

- Much large neutrino flux
- Much lower energy deposition
- If we have a proper detector...

Precision measurement for neutrino properties

Reactor monitoring & nuclear non-proliferation

Reactor neutrinos for CEvNS

- Advanced detector technologies for low-threshold measurement
- CONUS(HPGe)

Ne

First hint from reactor neutrinos

Rate comparison (all detectors):

	counts	counts/(d·kg) (*)	1	
reactor OFF (114 kg*d)	582		1	
reactor ON (112 kg*d)	653			
ON-OFF (exposure corr.)	84	0.94		
Significance	24 0	230	1-	Some systematics

holuding stat. uncertainty and above efficiencies

- W. Maneschg, Nu2018
- CONNIE(Si CCD)

RED-100(LXe)

• Nu-cleus(CaWO₄+Al₂O₃)

• MINER(Ge)

• vGeN(HPGe)

TEXONO(PCGe)

Many groups do experiment on reactor neutrino-nucleus scattering

NEON Collaboration

~ 15 people who are all active members of COSINE-100 or NEOS

Aim to observe CEvNS from reactor \bar{v}_e using NaI(TI) detector Can take an advantage of COSINE-100 and NEOS experiences

NaI(TI) for $CE\nu NS$

- High measured light yield (15 NPE/keV in COSINE-100)
- Larger recoil energy from Na (N² dependence testable)
- Easy to make large size detector O(10 kg)
- Low background detector available (3 counts/kg/day/keV=3dru)
- Easy to scale up with affordable costs O(100 kg)
- Can we reach to low enough energy threshold? 0.2 keV_{ER}?

Nal(TI) in COSINE-100 experiments

• 1 keV (15 NPE) energy threshold with multivariable analysis

Previous BDT score

Updated BDT score

Ne Lowering energy threshold with COSINE-100

COSINE-100 detector

- COSINE-100 detector is not optimized for high light yield
 - ♦ 3" PMT for 4.75" Diameter crystal
 - Three layers of optical interface between PMT and crystal
- Machining, polishing, and detector assembly for Nal is prepared for COSINE-200

NEON detector

Commercial crystals

- 3" diameter crystal
- Direct attach between crystal and PMT

No quartz window

Three detectors were built

NEON detector @ underground

 NEON detector has been measured at Yangyang underground laboratory
 Am241 calibration

Understanding low-energy events

BDT trained with COSINE-100 data are used

Ne

Pure signal samples are necessary for multivariable training

Simulation for low energy events

Single photoelectron data

24 Counts

Modeling for scintillation decay time

Single photoelectron simulation

PMT1 = 4 NPE PMT1 = 4 NPE PMT1 = 4 NPE PMT1 = 0 NPE

PMT by PMT optimization are necessary

Simulation for low energy events

Ne

Trigger Efficiency for 15 NPE/keV

Quenching factor

Quenching factor

~18.2 NPE/keV

Scattering angle (deg)	Sim. Na recoil energy (keV _{nr})	Observed recoil energy (keV _{ee})	Quenching factor
18.2	2.9 ± 0.7	< 0.65	< 0.22
24.9	5.7 ± 0.7	0.76 ± 0.4	0.133 ± 0.018
31.1	8.8 ± 1.2	1.13 ± 0.5	0.129 ± 0.014
32.2	9.1 ± 1.2	1.46 ± 0.5	0.162 ± 0.012
41.1	14.3 ± 2.4	2.21 ± 0.9	0.159 ± 0.019
41.3	15.0 ± 1.4	2.36 ± 0.8	0.160 ± 0.010
47.9	19.4 ± 1.6	3.21 ± 1.0	0.168 ± 0.009
54.4	24.9 ± 2.4	4.10 ± 1.5	0.171 ± 0.010
59.1	29.0 ± 1.9	5.36 ± 1.9	0.188 ± 0.008
64.6	33.3 ± 2.8	6.19 ± 2.1	0.191 ± 0.011
74.2	43.0 ± 2.2	8.53 ± 2.7	0.204 ± 0.008
84.0	51.8 ± 2.6	10.59 ± 4.5	0.207 ± 0.010

PRC 92, 015807 (2015)

Need to measure @ 2 keV_{nr}

~14 NPE/keV

Nuclei	Scattering angle (degree)	E _{ee} (keV)	E _{nr} (keV)	Quenching factor (%)
Na	13.2	< 0.5	5.8 ± 1.0	
	16.4	$0.83~\pm~0.07$	8.7 ± 1.3	9.6 ± 1.6
	21.3	$1.68~\pm~0.04$	$14.8~\pm~1.6$	11.3 ± 1.2
	26.6	$3.20~\pm~0.05$	22.7 ± 2.0	14.1 ± 1.3
	31.0	5.17 ± 0.07	30.1 ± 2.2	17.2 ± 1.3
	38.2	$7.97~\pm~0.09$	46.1 ± 2.8	17.3 ± 1.1
	45.0	11.4 ± 0.1	62.6 ± 3.2	18.1 ± 0.9
	51.3	$16.8~\pm~0.2$	78.9 ± 3.6	21.3 ± 1.0
	59.0	22.7 ± 0.2	102.7 ± 4.1	22.1 ± 0.9
	74.7	$34.7~\pm~0.3$	$151.6~\pm~5.0$	$22.9~\pm~0.8$

Astropart. Phys. 108, 50 (2019)

Quenching factor

We need high light yield detector for low energy calibration

Detector under preparation

Encapsulation

High LY Detector

Hanbit nuclear power plant

Tendon Gallery of Hanbit Nuclear Power Plant (Yeonggwang)

- Good relation with company (positive for new project)
- 2.8 GW thermal power
- Tendon gallery is ~24 m far from reactor core
 - Environmental conditions were well understood with NEOS experiment

Hanbit nuclear power plant

Sensitivity

- Flat background ~10 dru
- Detector mass = 10 kg
- Reactor on data = 365 days
- Reactor off data = 100 days
- Light yield = 25 NPE/keV
- QF from fit of Lindhard model
- Threshold = 4 NPE

1000 Pseudo experiments

NEON shielding & preparation

NEON @ CUP basement

All commercial NaI(Tl) crystals Total 14.8 kg

Nal (3"X4")	3 units ready		
Nal (3"X8")	3 units on delivery		
PMTs	ready		
Cables	ready		
LS	On the production		
Acrylic box	ready		
Sus bars	ready		
Lead	ready		
Borated PE	ready		
Preamps	ready		
FADCs	ready		
DAQ	ready but debugging		
Slow monitoring	Working on it		

Pre-installation at IBS HQ

Strategy of NEON experiment

2019	2020	2021	2022	2023	2024	2025	
NEON-pilot							
		NEON-phase 1					
				NEON-phase 2			

- NEON-pilot (~2021)
 - ~15 kg commercial crystals (~ 10 dru background)
 - Install at March-April 2020
 - Demonstration of detector performance to observe CEvNS using reactor
- NEON-phase1 (~2023)
 - ~50 kg COSINE-100 quality crystals (~3dru background)
 - Observation of CEvNS and start precision measurement
- NEON-phase2 (~2025)
 - ~100 kg purified crystals (<1dru background)</p>
 - Precision measurement and explore new physics interaction

<Body growth>

Y.D Kim's talk

- NEON is newcomer for $CE\nu NS$ from reactor neutrino
- NEON use conventional Nal(TI) detector taking advantage of good development from COSINE experiment as well as reactor measurement experience from NEOS experiment
- NEON-pilot is about ready to be installed in reactor
 This March to April depending on power company plan

Stay tune !!