New results from CUORE and prospects for CUPID

Giovanni Benato for the CUORE and CUPID collaborations

24.02.2020 CNNP 2020

The bolometric technique

- Low heat capacity @ T ~ 10 mK
- Excellent energy resolution (~0.2% FWHM)
- Detector agnostic to origin of energy deposition
- Detector response of O(1) sec if readout with e.g. Neutron Transmutation Doped (NTD) Ge sensors

Simplified thermal model

- Crystal heat capacity: C
- Conductivity of coupling to thermal bath: G
- Signal amplitude $\propto \Delta T = E_{dep} / C$
- Decay constant: $\tau = G / C$

Background suppression via Particle IDentification (PID)

- Main background: surface α events
- Couple main crystal with secondary bolometer reading the scintillation (or Cherenkov) light
- Exploit different light yield (LY) of α vs β/γ to actively suppress background
- Typical light detector: thin Ge wafer coupled to thermometer (NTD, TES, KID, MMC)

Isotope choice for bolometric experiment

- High isotopic abundance
- Enrichment possible at reasonable cost?
- $Q_{\beta\beta}$ above end point of β or γ radiation?
- Scintillating crystal available?
- Large scale crystal production possible?

Advantages of bolometric approach

- Detectors and infrastructure are decoupled.
 Same cryogenic infrastructure re-usable with different isotopes and/or crystals
- Perfect for test of discovery or precision measurements

The CUORE experiment

SINAP

Invent the Future®

Massachusetts Institute of Technology

UNIVERSITY OF

ÍNFŃ

The CUORE experiment

CUORE: the Cryogenic Underground Observatory for Rare Events

- 988 TeO₂ crystals with natural Te composition
 742 kg total mass, 206 kg ¹³⁰Te mass
- $Q_{\beta\beta}^{(130}$ Te) = 2527.5 keV \rightarrow Above most natural γ background
- Located in Hall A of the Gran Sasso National Lab
- Background goal: 10^{-2} counts/keV/kg/yr at $Q_{\beta\beta}$
- Sensitivity goal on $T_{1/2}^{0v} = 9.10^{25}$ yr with 5 yr of live time

CUORE infrastructure

The coldest cubic meter in the known Universe

- Multistage cryogen-free
 cryostat
- Cooling systems: fast cooling system, Pulse Tubes (PTs), and Dilution Unit (DU)
- ~15 tons @ < 4 K
- ~ 3 tons @ < 50 mK
- Mechanical vibration isolation
- Active noise cancelling

CUORE (passive) shielding

- Roman Pb shielding in cryostat
- External Pb shielding
- H₃BO₃ panels + polyethylene

Optimization of the CUORE operations

CUORE Run Time Breakdown

- Upgrade of calibration system (2018)
- Major cryogenic maintenance (early 2019)
- Installed linear drives to control the pulse tube (PT) motorhead frequency
- Implemented PT active noise cancellation via phase tuning
- Optimized procedure for load curve, working point and temperature scan
- Improved data processing and analysis techniques

CUORE Run Time Breakdown

Background
Calibration
 Down Time
NPulses
Setup
 Test

G. Benato for CUORE and CUPID

Optimum Trigger

- Identifies physical signals using the full information contained in the signal pulse, not only on the signal rise
- Disentangles low energy signal from noise events + Lower threshold
- Applied for offline retriggering of continuous data
- Threshold at 90% trigger efficiency reduced by a factor ~5 with respect to the "standard" derivative trigger

CUORE data processing

G. Benato for CUORE and CUPID

CUORE data processing

G. Benato for CUORE and CUPID

Lineshape

- Fit ²⁰⁸TI line at 2615 keV in calibration data to precisely model peak shape
- Fit γ lines in physics data keeping lineshape function fixed, and extract position and FWHM
- Fit bias vs energy, and FWHM vs energy
- Bias and FWHM uncertainties treated as systematics for the $0\nu\beta\beta$ decay analysis

Background resolution vs. energy, 2-0 fits (ds3564)

Residual vs. energy, 2-0 fits (ds3519)

Efficiencies

Anti-Coincidence Efficiency (DS 2)

Reconstructed Energy [keV]

CUORE physics spectrum

Statistical approach to $0\nu\beta\beta$ decay search

Bayes theorem:
$$P\left(\vec{\theta}|\vec{E}\right) = \frac{\mathcal{L}\left(\vec{E}|\vec{\theta}\right) \cdot \pi\left(\vec{\theta}\right)}{\int_{\Omega} \mathcal{L}\left(\vec{E}|\vec{\theta}\right) \cdot \pi\left(\vec{\theta}\right) d\vec{\theta}}$$

Likelihood: $\mathcal{L}\left(\vec{E}|\vec{\theta}\right) = \prod_{dataset channel} \prod_{channel} \left[\frac{e^{-\lambda}\lambda^{n}}{n!}\prod_{event i} \left(\frac{s}{\lambda}pdf_{0\nu\beta\beta}\left(E_{i}|\vec{\theta}\right) + \frac{c}{\lambda}pdf_{60}c_{o}\left(E_{i}|\vec{\theta}\right) + \frac{b}{\lambda}\frac{1}{\Delta E}\right)\right]$
Expectation value: $\lambda = s+c+b$
Width of fit region: ΔE

Systematics implemented as nuisance parameters

Parameter	Dependence	Method
Analysis efficiency I	Dataset	Gaussian
Analysis efficiency II	Global	Flat in [0.993, 1.007] range
Energy bias	Dataset	Fit residuals of peaks in physics spectrum from literature values with 2 nd order polynomial
Energy resolution	Dataset	Fit ratio of FWHM in physics and calibration data with 2 nd order polynomial
Q _{ββ}	Global	Gaussian, 2527.518(13) keV
¹³⁰ Te isotopic fraction	Global	Gaussian, 34.1668(16)%

G. Benato for CUORE and CUPID

$0\nu\beta\beta$ search results

- Background index (BI) is a dataset dependent parameter
- Fit performed using <u>BAT</u>
- From bkg-only fit: **BI** = (1.38±0.07) · 10⁻² counts/(keV·kg·yr)

Sensitivity

- Generate toy-MC data using bkg-only model, fit them with the signal+bkg model, extract 90% c.i. Limit on $T_{1/2}^{0v}$
- Median exclusion sensitivity: $T_{1/2}^{0v} = 1.7 \cdot 10^{25} \text{ yr}$

Results

- Best fit at $\Gamma_{0v} = 0 \text{ yr}^{-1}$
- $T_{1/2}^{0v} > 3.2 \cdot 10^{25} \text{ yr} @ 90\% \text{ c.i.}$
 - → 3% probability of getting a stronger limit
- Systematics affect limit by 0.4%
- Assuming light neutrino exchange: m_{BB} < 75 350 meV
- More infos: <u>arXiv:1912.10966</u>

G. Benato for CUORE and CUPID

Lessons learned from CUORE

ROI - External sources

- Most measured background is due to α particles (U/Th contaminations close to TeO₂ crystals)
 - → α/β discrimination is required
- A $Q_{\beta\beta}$ > 2.6 MeV would automatically reduce the remaining non- α background by one order of magnitude
- Muons are the dominant contribution
 - ⇒ active muon veto

CUPID: CUORE Upgrade with Particle Identification

CUPID goals and background projection

- Crystals:
 - U/Th bulk \rightarrow from CUPID-Mo
 - \circ U/Th surface \rightarrow from CUORE bkg-model
 - ο $2\nu\beta\beta$ pile-up ($T_{1/2}^{2\nu} = 7.1 \times 10^{18}$ yr)
- Crystal holders
 - U/Th surface → CUPID-0 bkg-model
- Cryogenic infrastructure and shielding
 - U/Th bulk → CUORE bkg-model
- Muons → Cut by muon veto

- \sim 1500 Li₂¹⁰⁰MoO₄ scintillating crystals (~250 kg of ¹⁰⁰Mo)
- Goal FWHM: 5 keV at Q_{ββ}
- α rejection via PID
- Goal background: 10⁻⁴ counts/keV/kg/yr
- Discovery sensitivity: $T_{1/2}^{0v} = 10^{27}$ yr

CUPID physics goal

- <u>CUPID pre-CDR:</u> very conservative
 - Exactly what we could start building today. No improvement assumed!
- CUPID reach: assume improvement at reach before construction
 - \circ ~ Improved signal timing with TES on LD ~
 - Improved radiopurity
 - Zero-bkg condition: 2.10⁻⁵ counts/keV/kg/yr
- CUPID 1 ton: new 4x larger cryostat
 - 1 ton of ¹⁰⁰Mo, plus possibly other isotopes
 - \circ BI: 5.10⁻⁶ counts/keV/kg/yr

Parameter	CUPID Baseline	CUPID-reach	CUPID-1T
Crystal	$\mathrm{Li}_2^{100}\mathrm{MoO}_4$	$\mathrm{Li}_2^{100}\mathrm{MoO}_4$	$\mathrm{Li}_2^{100}\mathrm{MoO}_4$
Detector mass (kg)	472	472	1871
100 Mo mass (kg)	253	253	1000
Energy resolution FWHM (keV)	5	5	5
Background index (counts/(keV·kg·yr))	10^{-4}	2×10^{-5}	$5 imes 10^{-6}$
Containment efficiency	79%	79%	79%
Selection efficiency	90%	90%	90%
Livetime (years)	10	10	10
Half-life exclusion sensitivity (90% C.L.)	$1.5 \times 10^{27} \text{ y}$	$2.3 \times 10^{27} \text{ y}$	$9.2 \times 10^{27} \text{ y}$
Half-life discovery sensitivity (3σ)	$1.1 \times 10^{27} { m y}$	$2 \times 10^{27} \text{ y}$	$8 \times 10^{27} \text{ y}$
$m_{\beta\beta}$ exclusion sensitivity (90% C.L.)	$1017~\mathrm{meV}$	8.214 meV	$4.1-6.8~{ m MeV}$
$m_{\beta\beta}$ discovery sensitivity (3 σ)	12-20 meV	$8.815~\mathrm{meV}$	4.4– $7.3 meV$

Backup: load curves, working point & temperature scans

- Achieve high quality detector readout with a good signal-to-noise ratio
- Dedicated procedures and algorithms to automate the load curve measurement and the working point identification at each T_{base}.

Backup: external detector calibration system (EDCS)

- Internal calibration system: ²³²Th sources inserted between crystals at 10 mK
 - Complicated and delicate procedure that interferes with the cryogenic system operation
- External calibration system: mixed ²³²Th+⁶⁰Co sources inserted between cryostat and external lead shielding.

Backup: effective parameters

Number of datasets	7
Number of valid calorimeters (min-max)	900-954
TeO ₂ exposure	372.5 kg⋅yr
FWHM at 2615 keV in calibration data	7.73(3) keV
FWHM at $Q_{_{\beta\beta}}$ in physics data	7.0(4) keV
Reconstruction efficiency	95.802(3)%
Anticoincidence efficiency	98.7(1)%
PSA efficiency	92.6(1)%
Total analysis efficiency	87.5(2)%
Containment efficiency	88.35(9)%