Status of the SuperNEMO Experiment

8

S

*

\$

87

Ř

\$

*

W

8

\$

**

Alessandro Minotti (LAPP)

On Behalf of the SuperNEMO Collaboration

CNNP 2020

- What is the $0\nu\beta\beta$ and how we look for it with SuperNEMO?
- We are making a Demonstrator! With 6.3 kg ⁸²Se
- It builds on and enhances the NEMO technology
- Is under commissioning!
- It will search for the $0\nu\beta\beta$ and study the $2\nu\beta\beta$ of ⁸²Se

• What is the $0\nu\beta\beta$ and how we look for it with SuperNEMO?

- We are making a Demonstrator! With 6.3 kg ⁸²Se
- It builds on and enhances the NEMO technology
- Is under commissioning!
- It will search for the $0\nu\beta\beta$ and study the $2\nu\beta\beta$ of ${}^{82}Se$

Neutrinoless Double Beta Decay

- Nuclear decay where matter is created, and the conservation of total lepton number violated
 - Requires Majorana neutrinos (v = \overline{v})
 - Is a gateway toward Physics beyond the Standard Model
 - Can help answering a number of open questions in particle Physics and cosmology (mass scale, baryon-antibaryon asymmetry)

• Continuous β-like energy distribution

SuperNEMO and the Hunt for $0\nu\beta\beta$

- A large number of projects worldwide is seeking $0\nu\beta\beta$ with different isotopes/techniques
- SuperNEMO employs a tracking-calorimetry detection technique
 - Source decoupled from detector \rightarrow modular, can change isotope
 - Full event topology reconstruction → PID, background rejection, distinguish between ββ mechanisms
- Decay vertex
- Charged particle trajectory
- Particle energy and TOF

Alessandro Minotti (LAPP)

- What is the $0\nu\beta\beta$ and how we look for it with SuperNEMO?
- We are making a Demonstrator! With 6.3 kg ⁸²Se
- It builds on and enhances the NEMO technology
- Is under commissioning!
- It will search for the $0\nu\beta\beta$ and study the $2\nu\beta\beta$ of ^{82}Se

LSM - Home of SuperNEMO

• The SuperNEMO Demonstrator is hosted in the Modane Underground Laboratory (LSM)

Alessandro Minotti (LAPP)

 $\beta\beta$ source

⁸²Se foils (~ 50 mg/cm²)

- 34 source foils for 6.3 kg 82 Se (Q_{ββ} = 2997.9 keV)
- Total surface 13.1 m²

- Different purification techniques (distillation, chromatography, chemical precipitation)
- Enriched ⁸²Se powder mixed with PVA and poured/wrapped in Mylar

ββ source	⁸² Se foils (~ 50 mg/cm ²)	-
Tracker	2034 geiger cells drift chamber in B field (25 G)	

- 113 rows of 9 cells on each side (~13000 wires)
- + 25 G magnetic field for PID (α / $e^{_+}$ / $e^{_-})$

- Charged particle ionises gas (He₂) and the resulting e⁻ avalanche drifts towards anode
 - Drift time gives distance from anode R
 - Difference in signal on wire ends gives z

The SuperNEMO Experiment

cathode end-cap

anode wire (1800 V)

field wires

ββ source	⁸² Se foils (~ 50 mg/cm ²)
Tracker	2034 geiger cells drift chamber in B field (25 G)
Calorimeter	712 optical modules (PS coupled with PMT)

- Main walls: 20×13 optical modules
- X-walls (sides): 4×16 optical modules
- γ -veto (top/bottom): 2 × 16 optical modules

- **Optical module**: 8"(5") Hamamatsu photomultiplier directly coupled with plastic scintillator block
 - Individual magnetic shield
 - teflon/mylar wrapping for optical insulation

The SuperNEMO Experiment

В

Alessandro Minotti (LAPP)

ββ source	⁸² Se foils (~ 50 mg/cm ²)
Tracker	2034 geiger cells drift chamber in B field (25 G)
Calorimeter	712 optical modules (PS coupled with PMT)
Calibration Systems	Source Deployment, Light Injection

- Absolute energy calibration & background studies
 - Rn-tight automatised deployment system of calibration sources (γ, n)
 - Calibration on on weekly basis (~15 hours)

- Relative time/energy calibration
 - UV light injection system
 (20 pulsed LED + fibres)
 - Reference PMT for stability monitoring

Alessandro Minotti (LAPP)

ββ source	⁸² Se foils (~ 50 mg/cm ²)
Tracker	2034 geiger cells drift chamber in B field (25 G)
Calorimeter	712 optical modules (PS coupled with PMT)
Calibration Systems	Source Deployment, Light Injection
Background Mitigation	Passive shielding (Fe, PE, H ₂ O), anti-Rn system

- Anti-radon system
 - Black polycarbonate tent
 - Flushed air purified with Rn cold-C trap

- Multi-purpose shielding
 - 20 mm PE
 - 180 mm Fe
 - 300 mm H₂O enriched with B

Alessandro Minotti (LAPP)

SuperNEMO Papers

Technical papers published and under preparation for SuperNEMO

Development of methods for the preparation of radiopure ⁸²Se sources for the SuperNEMO neutrinoless double-beta decay experiment

Alimardon V. Rakhimov 🖂 / A. S. Barabash / A. Basharina-Freshville / S. Blot / M. Bongrand / Ch. Bourgeols / D. Breton / R. Breler / E. Birdsall / V. B. Brudanin / H. Burešova / J. Busto / S. Calvez / M. Cascella / C. Cerna / J. P. Cesar / E. Chauveau / A. Chopra / G. Claverie / S. De Capua / F. Delalee / D. Duchesneau / V. G. Egorov / G. Eurin / J. J. Evans / L. Fajt / D. V. Filosofov / R. Flack / X. Garrido / H. Gomez / B. Guillon / P. Guzowski / R. Hodák / K. Holý / A. Huber / C. Hugon / A. Jeremie / S. Jullian / D. V. Karaivanov / M. Kauer / A. A. Klimenko / O. I. Kochetov / S. I. Konovalov / V. Kovalenko / K. Lang / Y. Lemière / T. Le Noblet / Z. Liptak / X. R. Liu / P. Loaiza / G. Lutter / J. Maalmi / M. Macko / F. Mamedov / C. Marquet / F. Mauger / A. Minotti / A. A. Mirsagatova / N. A. Mirzayev / I. Moreau / B. Morgan / J. Mott /

M. Kauer / A. A. Klimenko / O. I. Kochetov / S. I. Konovalov / V. Kovalenko /
K. Lang / Y. Lemière / T. Le Noblet / Z. Liptak / X. R. Liu / P. Loaiza / G. Lutter
/ J. Maalmi / M. Macko / F. Mamedov / C. Marquet / F. Mauger / A. Minotti /
A. A. Mirsagatova / N. A. Mirzayev / I. Moreau / B. Morgan / J. Mott /

Radiochimica Acta (2019) 108.2 (2019): 87-97

- ⁸²Se source papers
 - Radiopurity paper published
 - Source foils preparation paper under preparation

- Other technical papers under preparation
 - Tracker paper
 - Calorimeter paper

- What is the $0\nu\beta\beta$ and how we look for it with SuperNEMO?
- We are making a Demonstrator! With 6.3 kg ⁸²Se
- It builds on and enhances the NEMO technology
- Is under commissioning!
- It will search for the $0\nu\beta\beta$ and study the $2\nu\beta\beta$ of ⁸²Se

The NEMO-3 Experience

SuperNEMO builds on the successful NEMO-3 experiment

ββ source	¹⁰⁰ Mo (6.9 kg), ⁸² Se (0.93 kg), ¹³⁰ Te (0.45 kg), ¹¹⁶ Cd (0.40 kg) foils (60 mg/cm2)
Tracker	6180 geiger cells drift chamber in B field (25 G)
Calorimeter	1940 optical modules (PS coupled with 3/5" PMT)

- Several world-best limits (T_{0v\beta\beta}) and measurements (T_{2v\beta\beta}) on a variety of isotopes
 - 100 Mo (Eur. Phys. J. C (2019) 79:440) $T_{1/2^{2\nu\beta\beta}} = [7.11 \pm 0.02 \text{ (stat)} \pm 0.54 \text{ (sys)}] \times 10^{18} \text{ y}$
 - 48Ca (Phys. Rev. D 93, 112008)
 - ⁸²Se (Eur. Phys. J. C (2018) 78: 821)
 - 150Nd (Phys. Rev. D 94, 072003)
 - ¹¹⁶Cd (Phys. Rev. D 95, 012007)
 - ¹³⁰**Te** (Phys. Rev. Lett. 107, 062504)
 - ⁹⁶Zr (Nucl.Phys.A847:168-179)
 - **0v4β** (Phys. Rev. Lett. 119, 041801)
- $$\begin{split} T_{1/2}{}^{2\nu\beta\beta} &= [6.4^{+0.7} \cdot 0.6 \text{ (stat) } {}^{+1.2} \cdot 0.9 \text{ (sys)}] \times 10^{19} \text{ y} \\ T_{1/2}{}^{2\nu\beta\beta} &= [9.39 \pm 0.17 \text{ (stat) } \pm 0.58 \text{ (sys)}] \times 10^{19} \text{ y} \\ T_{1/2}{}^{2\nu\beta\beta} &= [9.34 \pm 0.22 \text{ (stat) } {}^{+0.62} \cdot 0.60 \text{ (sys)}] \times 10^{18} \text{ y} \\ T_{1/2}{}^{2\nu\beta\beta} &= [2.74 \pm 0.04 \text{ (stat) } \pm 0.18 \text{ (sys)}] \times 10^{19} \text{ y} \\ T_{1/2}{}^{2\nu\beta\beta} &= [7.0 \pm 0.9 \text{ (stat) } \pm 1.1 \text{ (sys)}] \times 10^{20} \text{ y} \\ T_{1/2}{}^{2\nu\beta\beta} &= [2.35 \pm 0.14 \text{ (stat) } \pm 0.16 \text{ (sys)}] \times 10^{19} \text{ y} \\ T_{1/2}{}^{0\nu4\beta} &> 1.1 \times 10^{21} \text{ y} \end{split}$$

Alessandro Minotti (LAPP)

The NEMO-3 Experience

• SuperNEMO builds on the successful NEMO-3 experiment

ββ source	¹⁰⁰ Mo (6.9 kg), ⁸² Se (0.93 kg), ¹³⁰ Te (0.45 kg), ¹¹⁶ Cd (0.40 kg) foils (60 mg/cm2)
Tracker	6180 geiger cells drift chamber in B field (25 G)
Calorimeter	1940 optical modules (PS coupled with 3/5" PMT)

- Several world-best limits (T_{0v\beta\beta}) and measurements (T_{2v\beta\beta}) on a variety of isotopes
 - 100 Mo (Eur. Phys. J. C (2019) 79:440) $T_{1/2^{2\nu\beta\beta}} = [7.11 \pm 0.02 \text{ (stat)} \pm 0.54 \text{ (sys)}] \times 10^{18} \text{ y}$
 - 48Ca (Phys. Rev. D 93, 112008)
 - ⁸²Se (Eur. Phys. J. C (2018) 78: 821)
 - ¹⁵⁰Nd (Phys. Rev. D 94, 072003)
 - ¹¹⁶Cd (Phys. Rev. D 95, 012007)
 - ¹³⁰**Te** (Phys. Rev. Lett. 107, 062504)
 - ⁹⁶Zr (Nucl.Phys.A847:168-179)
 - **0v4β** (Phys. Rev. Lett. 119, 041801)
- $$\begin{split} T_{1/2}{}^{2\nu\beta\beta} &= [6.4^{+0.7} \cdot 0.6 \text{ (stat) } {}^{+1.2} \cdot 0.9 \text{ (sys)}] \times 10^{19} \text{ y} \\ T_{1/2}{}^{2\nu\beta\beta} &= [9.39 \pm 0.17 \text{ (stat) } \pm 0.58 \text{ (sys)}] \times 10^{19} \text{ y} \\ T_{1/2}{}^{2\nu\beta\beta} &= [9.34 \pm 0.22 \text{ (stat) } {}^{+0.62} \cdot 0.60 \text{ (sys)}] \times 10^{18} \text{ y} \\ T_{1/2}{}^{2\nu\beta\beta} &= [2.74 \pm 0.04 \text{ (stat) } \pm 0.18 \text{ (sys)}] \times 10^{19} \text{ y} \\ T_{1/2}{}^{2\nu\beta\beta} &= [7.0 \pm 0.9 \text{ (stat) } \pm 1.1 \text{ (sys)}] \times 10^{20} \text{ y} \\ T_{1/2}{}^{2\nu\beta\beta} &= [2.35 \pm 0.14 \text{ (stat) } \pm 0.16 \text{ (sys)}] \times 10^{19} \text{ y} \\ T_{1/2}{}^{0\nu4\beta} &> 1.1 \times 10^{21} \text{ y} \end{split}$$

The NEMO-3 Experience

Recent NEMO-3 results on ¹⁰⁰Mo and ⁸²Se

- Single-state dominance strongly favoured
- Exotic searches with spectral analysis

- $T_{2v_{1/2}} (^{82}Se, 0_{gs} \rightarrow 0_{1}) > 1.3 \times 10^{21} \text{ y}$
- $T_{0v_{1/2}} (^{82}Se, 0_{gs} \rightarrow 0_{1}) > 2.3 \times 10^{22} \text{ y}$

- The SuperNEMO demonstrator upgrades the NEMO-3 technique
 - Improved energy resolution in high-granularity calorimeter

	NEMO-3	SuperNEMO Demonstrator
Source Isotope		
Main Isotope	¹⁰⁰ Mo	⁸² Se
Mass	7 kg	7 kg
Energy Resolution		
FWHM @ 1 MeV	1 5 %	8 %
FWHM @ 3 MeV	8 %	4 %
Source Radiopurity		
A(²⁰⁸ TI)	~ 100 µBq/kg	< 2 µBq/kg
A(²¹⁴ Bi)	< 300 µBq/kg	< 10 µBq/kg
Gaseous Radon		
A(²²² Rn)	~ 5 mBq/m³	< 0.15 mBq/m ³
0∨ββ Sensitivity	T _{1/2} > 10 ²⁴ y (5y)	$T_{1/2} > 6 \times 10^{24} \text{ y}$ (2.5y)

- OMs tested individually
 - 7.8 % FWHM @ 1 MeV
 - Time resolution 400 ps

Alessandro Minotti (LAPP)

- The SuperNEMO demonstrator upgrades the NEMO-3 technique
 - Improved energy resolution in high-granularity calorimeter
 - Improved source radio purity thanks to novel source foil production technique

	NEMO-3	SuperNEMO Demonstrator
Source Isotope		
Main Isotope	¹⁰⁰ Mo	⁸² Se
Mass	7 k <u>g</u>	7 k <u>g</u>
Energy Resolution		
FWHM @ 1 MeV	15 %	8 %
FWHM @ 3 MeV	8 %	4 %
Source Radiopurity		
A(²⁰⁸ TI)	~ 100 µBq/kg	< 2 µBq/kg
A(²¹⁴ Bi)	< 300 µBq/kg	< 10 µBq/kg
Gaseous Radon		
A(²²² Rn)	~ 5 mBq/m³	< 0.15 mBq/m³
0vββ Sensitivity	T _{1/2} > 10 ²⁴ y (5y)	T _{1/2} > 6 × 10 ²⁴ y (2.5y)

- Source foil contaminations investigated with dedicated BiPo setup
 - 10 μ Bq/kg target A for ²¹⁴Bi
 - 2 μ Bq/kg target A for ²⁰⁸Tl

Alessandro Minotti (LAPP)

- The SuperNEMO demonstrator upgrades the NEMO-3 technique
 - Improved energy resolution in high-granularity calorimeter
 - Improved source radio purity thanks to novel source foil production technique

	NEMO-3	SuperNEMO Demonstrator
Source Isotope		
Main Isotope	¹⁰⁰ Mo	⁸² Se
Mass	7 kg	7 k <u>g</u>
Energy Resolution		
FWHM @ 1 MeV	15 %	8 %
FWHM @ 3 MeV	8 %	4 %
Source Radiopurity		
A(²⁰⁸ TI)	~ 100 µBq/kg	< 2 µBq/kg
A(²¹⁴ Bi)	< 300 µBq/kg	< 10 µBq/kg
Gaseous Radon		
A(²²² Rn)	~ 5 mBq/m³	< 0.15 mBq/m³
0vββ Sensitivity	T _{1/2} > 10 ²⁴ y (5y)	T _{1/2} > 6 × 10 ²⁴ y (2.5y)

- Careful screening of materials using HPGe detectors
 - Measured activities 0.1-1 mBq/kg

Alessandro Minotti (LAPP)

- The SuperNEMO demonstrator upgrades the NEMO-3 technique
 - Improved energy resolution in high-granularity calorimeter
 - Improved source radio purity thanks to novel source foil production technique
 - Better insulation and gas purification to reduce ²²²Rn

	NEMO-3	SuperNEMO Demonstrator
Source Isotope		
Main Isotope	¹⁰⁰ Mo	⁸² Se
Mass	7 kg	7 kg
Energy Resolution		
FWHM @ 1 MeV	15 %	8 %
FWHM @ 3 MeV	8 %	4 %
Source Radiopurity		
A(²⁰⁸ TI)	~ 100 µBq/kg	< 2 µBq/kg
A(²¹⁴ Bi)	< 300 µBq/kg	< 10 µBq/kg
Gaseous Radon		
A(²²² Rn)	~ 5 mBq/m ³	< 0.15 mBq/m ³
0vββ Sensitivity	T _{1/2} > 10 ²⁴ y (5y)	T _{1/2} > 6 × 10 ²⁴ y (2.5y)

- Tracker flushed with He mixture (2 m³ / h) through Rn trap
 - A(Rn): 2.7 mBq/m³ \Rightarrow 0.15 mBq/m³
 - Measured with Rn concentration line

Alessandro Minotti (LAPP)

- The SuperNEMO demonstrator upgrades the NEMO-3 technique
 - Improved energy resolution in high-granularity calorimeter
 - Improved source radio purity thanks to novel source foil production technique
 - Better insulation and gas purification to reduce ²²²Rn

	NEMO-3	SuperNEMO Demonstrator
Source Isotope		
Main Isotope	¹⁰⁰ Mo	⁸² Se
Mass	7 k <u>g</u>	7 kg
Energy Resolution		
FWHM @ 1 MeV	15 %	8 %
FWHM @ 3 MeV	8 %	4 %
Source Radiopurity		
A(²⁰⁸ TI)	~ 100 µBq/kg	< 2 µBq/kg
A(²¹⁴ Bi)	< 300 µBq/kg	< 10 µBq/kg
Gaseous Radon		
A(²²² Rn)	~ 5 mBq/m ³	< 0.15 mBq/m ³
0vββ Sensitivity	T _{1/2} > 10 ²⁴ y (5y)	$T_{1/2} > 6 \times 10^{24} \text{ y}$ (2.5y)

- Materials carefully scrutinised
 - Rn emanation chamber
 - Rn permeability system

Alessandro Minotti (LAPP)

- The SuperNEMO demonstrator upgrades the NEMO-3 technique
 - Improved energy resolution in high-granularity calorimeter
 - Improved source radio purity thanks to novel source foil production technique
 - Better insulation and gas purification to reduce ²²²Rn
- Acts as a proof of principle for the SuperNEMO full project

	NEMO-3	SuperNEMO Demonstrator	SuperNEMO	
Source Isotope				
Main Isotope	¹⁰⁰ Mo	⁸² Se	⁸² Se	
Mass	7 k <u>g</u>	7 kg	~100 kg	
Energy Resolution				
FWHM @ 1 MeV	15 %	8 %		
FWHM @ 3 MeV	8 %	4 %		
Source Radiopurity				1
A(²⁰⁸ TI)	~ 100 µBq/kg	< 2 µBq/kg		1
A(²¹⁴ Bi)	< 300 µBq/kg	< 10 µBq/kg		+
Gaseous Radon				
A(²²² Rn)	~ 5 mBq/m³	< 0.15 mBq/m ³		1
0vββ Sensitivity	T _{1/2} > 10 ²⁴ y (5y)	T _{1/2} > 6×10 ²⁴ y (2.5y)	T _{1/2} > 10 ²⁶ y (5y)	

Alessandro Minotti (LAPP)

Detector Assembly Milestones

- Half-detector commissioning with Argon in March-June 2018
- Detector closing in November 2018
- Calorimeter fully functional (cabled, electronics, DAq) beginning of 2019, commissioning data collected since then
- Detector sealing operations, now reached overpressure in the tracker
- Currently finalising tracker cabling and electronics installation
- Coil and shielding installation in 2020
- $\cdot\,$ First data with fully shielded detector by 2020

- What is the $0\nu\beta\beta$ and how we look for it with SuperNEMO?
- We are making a Demonstrator! With 6.3 kg ⁸²Se
- It builds on and enhances the NEMO technology
- Is under commissioning!
- It will search for the $0\nu\beta\beta$ and study the $2\nu\beta\beta$ of ^{82}Se

Detector Commissioning

- Since November 2018, we have been collecting data with the calorimeter, with different conditions (w/ or w/o ²⁰⁷Bi source, single- vs multi-PMT trigger, light injection runs)
- Reflectometry: measure the reflection of a pulse on an OM to verify the cable length

Alessandro Minotti (LAPP)

26

Detector Commissioning

- Since November 2018, we have been collecting data with the calorimeter, with different conditions (w/ or w/o ²⁰⁷Bi source, single- vs multi-PMT trigger, light injection runs)
- Reflectometry: measure the reflection of a pulse on an OM to verify the cable length
- PMT trigger rates and event time coincidence (cross-talk)

Alessandro Minotti (LAPP)

Detector Commissioning

- Since November 2018, we have been collecting data with the calorimeter, with different conditions (w/ or w/o ²⁰⁷Bi source, single- vs multi-PMT trigger, light injection runs)
- Reflectometry: measure the reflection of a pulse on an OM to verify the cable length
- PMT trigger rates and event time coincidence (cross-talk)
- Waveform and baseline studies

Mean Baseline for French Main Wall OMs

Column																						
	0) 2		4		6		8		10		12		14		16		1	8	20)	
	0.10	-0.19	0.06	-0.15	-0.02	-0.14	-0.23	-0.21	-0.05	-0.06	-0.26	-0.30	-0.27	0.02	-0.14	0.20	0.18	0.04	-0.32	0.01		
2	-0.2	-0.10	0.36	-0.26	0.05	-0.09	-0.08	0.11	0.11	0.01	0.08	0.10	-0.10	0.22	0.15	0.17	0.04	0.26	0.18	0.01		-0.4
	-0.10	0.19	-0.20	0.24	0.05	0.08	0.08	-0.03	-0.08	0.05	0.08	-0.07	0.07	-0.35	-0.13	0.04	-0.08	-0.29	-0.10	-0.04		-0.3
4	+	0.10	0.21	0.21	0.03	0.06	0.02	0.04	-0.00	-0.00	-0.26	-0.11	-0.10	0.29	-0.03	0.19	0.10	-0.03	0.35	0.20		
	-0.12	0.08	0.02	0.01	0.02	-0.31	-0.11	-0.17	-0.04	-0.14	0.07	0.01	-0.49	0.43	-0.21	-0.20	0.16	-0.27	-0.17	0.00		-0.2
6	C -0.08	0.13	-0.00	-0.24	-0.17	0.01	-nan	0.24	-nan	0.07	0.18	-0.08	-0.39	-0.39	-0.13	-0.11	0.05	-0.20	0.12	-0.10		-0.1
	-0.05	0.03	-0.15	0.05	0.04	0.08	-0.27	-0.1	970	J.07	-0.14	0.08	-0.15	0.11	-nan	-nan	-0.06	-0.18	0.10	0.26		
8	5 0.18	-0.09	-0.20	-0.15	0.11	0.09	-0.25	-0.14	-0.14	0.13	N.	0.22	0.06	0.04	-0.09	-0.16	-0.19	0.12	0.09	0.12		0
	0.1 ⁻	-0.14	-0.21	0.14	-0.13	0.06	0.12	-0.17	0.09	0.03	-0.10	0.08	0.04	0.08	-0.01	-0.19	-0.00	0.02	-0.10	0.07		0.1
10	-0.00	0.02	-0.20	-0.23	-0.01	0.20	0.13	-0.20	-0.05	-0.02	0.08	0.04	0.11	0.11	-0.12	-0.02	0.30	0.30	0.11	0.24		0.1
	-0.07	-0.10	-0.00	-0.01	-0.16	-0.03	-0.09	0.09	0.19	0.15	-0.15	-0.04	0.00	0.12	-0.02	-0.11	0.04	-0.06	0.19	-0.05		0.2
2 12	2 0.06	0.23	-0.16	-0.01	0.00	0.37	0.11	-0.11	0.09	-0.19	0.39	0.19	-0.03	0.09	-0.16	0.12	-0.04	0.08	-0.21	-0.03		0.3 -
	-0.10	0.08	-0.24	0.11	0.06	-0.23	-0.21	-0.15	-0.07	-0.17	-0.08	-0.03	-0.24	-0.03	0.25	-0.25	-0.20	-0.23	0.22	0.07		٥ ۵
≥ 1′	1 nar	n -nan	-nan	-nan	-nan	-nan	-nan	-nan	-nan	-nan	-nan	-nan	-nan	-nan	-nan	-nan	-nan	-nan	-nan	-nan		0.4 ≥

Alessandro Minotti (LAPP)

- What is the $0\nu\beta\beta$ and how we look for it with SuperNEMO?
- We are making a Demonstrator! With 6.3 kg ⁸²Se
- It builds on and enhances the NEMO technology
- Is under commissioning!

• It will search for the $0\nu\beta\beta$ and study the $2\nu\beta\beta$ of ⁸²Se

Physics Scope

- + $^{82}Se~0\nu\beta\beta$ search, sensitivity goal: $T_{1/2}$ > 6 × 10^{24} y ; $\langle m_{\nu}\rangle$ < 140-400 meV
- Single-state vs higher-state dominated $2\nu\beta\beta$ discrimination @ 5σ
- Constraining of g_A
- Search for exotic $0\nu\beta\beta$ mechanisms
- Possibility to extend to other isotopes (¹⁵⁰Nd, ⁴⁸Ca) to test $0\nu\beta\beta$, $0\nu4\beta$

Alessandro Minotti (LAPP)

Physics Scope

- ⁸²Se 0v $\beta\beta$ search, sensitivity goal: T_{1/2} > 6 × 10²⁴ y ; $\langle m_v \rangle$ < 140-400 meV
- Single-state vs higher-state dominated $2\nu\beta\beta$ discrimination @ 5σ
- Constraining of g_A
- Search for exotic $0\nu\beta\beta$ mechanisms

Profit from full ββ topology reconstruction

• Possibility to extend to other isotopes (^{150}Nd , ^{48}Ca) to test $0\nu\beta\beta$, $0\nu4\beta$ — Profit from modularity

Alessandro Minotti (LAPP)

Summary

- The SuperNEMO demonstrator is undergoing its final integration phase and commissioning at LSM
- First data with full detector in 2020! Stay tuned!
- It builds on the success of the NEMO tracking-calorimetric technique, and aims to improve the sensitivity to 0vββ thanks to a better background mitigation and event detection
- With 6.3 kg of ⁸²Se, we aim at reaching a sensitivity of $T_{1/2} > 6 \times 10^{24}$ y
- The scientific scope includes single-state vs higher-state dominance discrimination, the constraining of g_A , and the search for $0v4\beta$
- The demonstrator acts as a proof of principle of a full scale 100 kg multi-module detector, whose sensitivity will scratch into the inverted hierarchy region

Thank you for your attention

SuperNEMO Collaboration meeting March 27-29, 2019

Imperial College London

CZECH

The University of Manchester

laborataire de atusique conqueculaire

Event Selection

- Electrons, α 's and γ 's are reconstructed combining the tracker and calorimeter signals

Alessandro Minotti (LAPP)

Ονββ Sensitivity Estimation

• ²¹⁴Bi background from Rn gas or ²³⁸U chain is estimated using Bi-Po coincidence and α tracks f

· 0.05 MeV

- $^{\rm 208}TI$ background is estimated using energy of γ 's

6∟

Alessandro Minotti (LAPP)

Measuring g_A in NEMO

Alessandro Minotti (LAPP)