Christian Enss, Heidelberg University for the ECHo Collaboration

The Electron Capture in ¹⁶³Ho Experiment

current best limits

m(<mark>v</mark> e)	\leq	1.1 eV/c ²	beta <mark>decay</mark>
m(<mark>v</mark> e)	\leq	150 eV/c ²	beta capture

TritiumM. Aker et al., PRL 123, 221802 (2019)HolmiumC. Velte et al., EPJC 79, 1026 (2019)

 E_{i}

$$\begin{array}{ccc} {}^{163}_{67}\text{Ho} \rightarrow {}^{163}_{66}\text{Dy}^* + \nu_{e} \\ & & & \\ &$$

A. De Rujula, M. Lusignoli, Phys. Lett. B **118** (1982) 429

the case of ¹⁶³Ho

Electron Capture: The Case of ¹⁶³Ho

Calorimetric Detection of E_c

Embedding ¹⁶³Ho in the absorber of an MMC

Requirements for ECHo: Total Number of Counts

fraction of counts in endpoint region

in last 1 eV interval only 6×10^{-13} counts

more than 10¹⁴ total number of counts needed

Requirement For ECHo: Detector Speed

Sensitivity for $\Delta E_{\rm FWHM} = 3 \, {\rm eV}$ and $f_{\rm pu} = 10^{-5}$

Overview of ECHo

K_a

ECHo Collaboration

Institute for Nuclear Chemistry, Johannes Gutenberg University Mainz Christoph E. Düllmann, Holger Dorrer, Klaus Eberhard, Fabian Schneider

Institute of Nuclear and Particle Physics, TU Dresden, Germany Kai Zuber

Institute for Physics, Johannes Gutenberg-Universität Tom Kieck, Nina Kneip, Klaus Wendt

Institute for Theoretical Physics, University of Tübingen, Germany Amand Fäßler

Kirchhoff-Institute for Physics, Heidelberg University, Germany Felix Ahrens, Arnolf Barth, Christian Enss, Loredana Gastaldo (Spokesperson), Daniel Hengstler, Andreas Fleischmann, Clemens Velte, Sebastian Kempf, Federica Mantegazzini, Daniel Richter, Mathias Wegner

Max-Planck Institute for Nuclear Physics Heidelberg, Germany Klaus Blaum, Andreas Dörr, Menno Door, Sergey Eliseev, Mikhail

Goncharov, Kathrin Kromer, Fabrice Piquemal, Alexander Rischka, Rima Schüssler, Christoph Schweiger

Petersburg Nuclear Physics Institute, Russia Pavel Filianin, Yuri Novikov

Physics Institute, University of Tübingen, Germany INTAT Josef Jochum, Alexander Göggelmann

Institut Laue-Langevin, Grenoble, France Ulli Köster

Institute for Theoretical Physics, Heidelberg University, Germany Maurtis Haverkort, Martin Braß

The Electron Capture in ¹⁶³Ho experiment - ECHo

L. Gastaldo et al., Eur. Phys. J Special Topics. 226 (2017) 1623-1694

Metallic Magnetic Calorimeters (MMCs)

paramagnetic sensor:

signal size:

$$\delta M = \frac{\partial M}{\partial T} \delta T = \frac{\partial M}{\partial T} \frac{E}{C_{\text{tot}}}$$

$\varDelta T \propto \varDelta M \propto \varDelta \phi \propto \varDelta U$

main difference to resistive calorimeters:

no dissipation in the sensor no galvanic contact to the sensor

energy resolution:

$$\Delta E_{\rm FWHM} \simeq 2.36 \sqrt{4k_{\rm B}C_{\rm Abs}T^2} \sqrt{2} \left(\frac{\tau_0}{\tau_1}\right)^{1/4}$$

A. Fleischmann, Adv. Solid State Phys. 41, 577 (2001)

MMC Performance at 6 keV

 $250 \,\mu\text{m} \times 250 \,\mu\text{m}$ Gold, $5 \,\mu\text{m}$ thick $I_0 + \delta I$ 98% Quantum Efficiency @ 6 keV 0.30 measured energy E_m / keV 150 b) a) C) ⁵⁵Mn, K_{α} ⁵⁵Mn κ_α^{K_β} 0.25 ⁵⁵Mn K_β www. $\Delta E_{\rm FWHM} = 1.58 \, {\rm eV}$ e< 0.20 amplitude / a.u. events per 0.2 100 escape-lines Kα $K_{\alpha 1}$ 0.15 τ~ 80 ns 0.10 50 0 ∧-20 -20 -40 -60 -60 $K_{\alpha 2}$ 1.2 % 0.05 0.00 -80 0 0.2 2 6 0.0 0.4 0.6 4 -0.2 0 8 5.86 5.88 5.90 5.92 time $t/\mu s$ photon energy Ep / keV energy E / keV record linearity record resolving power record speed

S. Kempf, A. Fleischmann, L. Gastaldo, C.E., J. Low Temp. Phys. 193, 365 (2018)

Production and Purification of ¹⁶³Ho

requirement: for 10⁶ Bq more than 10¹⁷ atoms

reactor production: (n,γ) -reaction on ¹⁶²Er

	neutron	capture			
high cross-section (19 b)	Er 162	Er 163	Er 164		
but radioactive contaminants	0.139	75 min	1.601		
	σ 19	∈; β⁺ γ (1114); g	v 13	∈ no γ	
			Ho 163	Ho 164	
purification peoded			4570 a	37 m 29 m	
pullication needed			€ ΠΟ γ	e β ⁻ 1.0) ly 37; e ⁻ γ91; e ⁻	

- ► separate Er from all lighter lanthanides before irradiation
- ► perform neutron irradiation of enriched ¹⁶²Er
- separate Ho from all heavier lanthanides after irradiaton
- ► mass separate ¹⁶³Ho to remove ^{166m}Ho

J.W. Engle et al., Nucl. Instrum. Meth. B **311**, (2013) 131

Production and Purification of ¹⁶³Ho

Mass Separation and Implantation

ISOLDE, CERN and RISIKO, Uni Mainz

Modane Data and Theoretical Spectrum

4 MMC pixels (A \approx 0.2 Bq), 4 days \rightarrow 275,000 counts

Q-value: $Q_{EC} = (2838 \pm 14) \text{ eV}$

New limit on neutrino mass $m(v_e) < 150 \text{ eV} (95\% \text{ C.L.})$

Background $b < 1.6 \times 10^{-4}$ events/pixel/day (95% C.L.)

M. Brass et al, Phys. Rev. C 97, 054620 (2018)C. Velte *et al.*, Eur. Phys. J C 79, 1026 (2019)

Current Work Horse: ECHo-1k Detector Chip

ECHo-1k array: 64 pixels to be loaded with ¹⁶³Ho

+ 4 detectors for diagnostics

10 mm

Cryogenic Platform For ECHo

installation of two cryogenic microwave setups

dc wiring and SQUID array installation

ultra-high sensitivity and ultra-fast T-stabilization system

On-going ECHo-1K Run

Set-up 1

Ho in Au 28 pixels average activity = 0.94 Bq total activity of 28.1 Bq

Set-up 2

Ho in Ag 35 pixels average activity = 0.71 Bq total activity of 25.9 Bq

22 days of continuous acquisition to reach 10⁸ events

Limit on m_{ν} : < 20 eV/c²

Detector set-up

ECHo-100k Chip

30 gradiometric channels \rightarrow 60 MMC pixels + 2 channels for temperature monitoring

- optimized for higher implantation efficiency
- optimized for better energy resolution
- designed for coupling to multiplexer and parallel readout

ECHo-100k Chip

superconducting meander

superconducting switch and bridges

thermalization pads

absorbers

ECHo-100k Characterisation

ECHo-1k: ~ 50 detectors

ECHo-100k: > 5.000 detectors

...

how to read out a large number of detectors ?

single channel readout:

10 wires, 2 SQUIDs, 1 electronics

number of wires parasitic heat load costs complexity

multiplexed readout:

~ 1000 detectors per readout cannel

possible schemes: FDM, CDM, TDM, ...

readout techology of ECHo

scalability

 $\sim N$

Frequency Division Multiplexing

Microwave SQUID Multiplexer (µMUX)

array readout using only one HEMT amplifier and two coaxes

K. Irwin and K. Lehnert, Appl. Phys. Lett. 85, 2107-9 (2004)
J.A.B. Mates *et al.*, Appl. Phys. Lett. 92, 023514 (2008)
S. Kempf, L. Gastaldo, A. Fleischmann, C.E., J. Low. Temp. Phys. 175, 850 (2014)
M. Wegner, *et al.*, J. Low. Temp. Phys. 193, 462 (2018)

2nd Generation Multiplexer µMUX02

- optimized rf-SQUID design
- Josephson-Contacts with high quality factor
- optimized resonators
- first tests with SDR-System

S. Kempf, et. al., to be published

2nd Generation Multiplexer µMUX02

Frequency Division Multiplexing: Software Defined Radio

O. Sander *et al.*, IEEE Trans. Nucl. Sci. **66**, 7 (2019)

First Test of µMUX02 with SDR

parallel readout of 8 Pixels

N. Karcher et al., JLTP (2020)

First Test of µMUX02 with SDR

parallel readout of 8 Pixels

no visible cross talk

N. Karcher et al., JLTP (2020)

µMUX03 LEMUX Design

15 mm

CNNP 2020

30

µMUX03 LEMUX Module

ECHo-100k: 12,000 MMC pixels → 400 channels, 15 MUX devices

Resonance frequency spacing: 10 MHz

System bandwidth: 4 – 8 GHz

Conclusions

ECHo is well underway ... so far no show stoppers discovered

A new limit is expected this year

ECHo-100k is being prepared and will be commissioned 2020

Thank you!

