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Neutrinos from CCSN
• Neutrinos are continuously emitted during SN evolution
• Three stages: infall and neutronization burst, accretion, 

and KH cooling.
1. Prompt neutrinos: the role of e-capture

=> charge exchange and -decay
3. Cooling phase: matter composition at the -sphere

=> chemical constants

L.Hudepohl et al PRL 104 251101
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Prompt burst from collapse and 
early post-bounce

• t-tb <100 ms : 1D dynamics, reduced progenitor
dependence

=> A strong case for testing microphysics!

L.Hudepohl et al, http://www.mpagarching.mpg.de/ccsnarchive
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Simulations set-up
• CoCoNut hydro code in GR

o neutrino loss in FMT scheme

• Progenitors from Woosely et al.   

• EoS effect: realistic models with full nuclear distributions
(HS-DD2 & Raduta-Gulminelli)

• Mass effect: HFB24 versus DZ10 and LDM 
• Electron-capture rates : Bruenn versus LMP(0) and 

LMP(3)

J.Novak ASCL 2012
B.Peres PRD 2013

S.E.Woosley
Rev.Mod.Phys.2002



Results: Ye(t) in the central element
A.Pascal et al PRC 2020
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Electron capture rates

• Tabulated SM calculations of EC rates are only available for sd
and fp nuclei at low e, while in the late stage of the collapse, 
exotic nuclei and high e dominate

A.Raduta PRC 2016

R.Titus J.Phys.G 2018
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Approximations
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1. ∆𝐸 ൌ 3;  𝑄 ൌ 𝜇 െ 𝜇;𝐵 ൌ ଶ


𝑁 𝑍 𝑁 𝑁 => no capture 

beyond N=40 BRUENN
2. ∆𝐸 ൌ 2.5; 𝐵 ൌ 3.6 LMP(0)

3. ∆𝐸 ൌ 𝑓ሺ𝐼, 𝑇, 𝜌ሻ; 𝐵 ൌ 3.6 LMP(3)
plus odd-even effects fitted from LSSM

R.Titus 2018 A.Raduta 2016

S.W.Bruenn ApJ 1985 

K.Langanke PRL 2003 
A.Raduta PRC 2016 



Results

• Important effect of the different approx on the e-
fraction dynamics

• Leads to a difference Ye/Ye=30% => Mh/Mh=30% 
in the enclosed mass at bounce

• Sizeable effect in the shock propagation after
bounce

A.Pascal et al PRC 2020



Results

• Important effect of the different approx on the e-
fraction dynamics

• Leads to a difference Ye/Ye=30% => Mh/Mh=30% 
in the enclosed mass at bounce

• Reflects into the neutrino luminosity

t(ms)

A.Pascal et al PRC 2020



• LMP(3) contains more 
nuclear physics and leads to 
a better reproduction of 
microscopic rates 

• Still the differences between
LMP(0) and LMP(3) concern
low Q-values where
microscopic rates do not 
exist

• => Need to benchmark on 
exp data/microscopic
calculations for some
relevant nuclei

Tabulated SM calculations: K.Langanke
Fit: A.Raduta et al. PRC 2016

Which model is correct?



The most important nuclei for EC

• In the advanced stage of the collapse, not more 
than 5 nuclei insure 50% of the total capture rate at 
each time

• 170 nuclei insure 90% of the total rate until neutrino 
trapping

A.Pascal et al PRC 2020

See also C.Sullivan ApJ 2016
R.Titus J.Phys.G 2018



B.Gao et al. PRC 101 (2020) 014308

93Nb(t,3He+)

J.C.Zamora et al, PRC 100 (2019), 032801(R) 

T=1Gk

A.A.Dzhioev et al. PRC 101 (2020) 025805

New data and new calculations ~ 
N=50  TQRPA



Nuclear physics constrained burst: 
Implications on the mass hierarchy

• NH (A): ∆𝑚௧
ଶ ൌ 𝑚ଷ

ଶ െ 𝑚ଵ,ଶ
ଶ  0 & 𝜃ଵଷ ≳ 10ିଷ

• IH (B):    ∆𝑚௧
ଶ ൌ 𝑚ଷ

ଶ െ 𝑚ଵ,ଶ
ଶ ൏ 0 &  𝜃ଵଷ ≳ 10ିଷ

• (C) 𝜃ଵଷ ≲ 10ିହ

P. Serpico et al. PRD85 085031 

ICECUBE 10 kpc, 15 M⊙

M.Kachelries et al PRD71 063003
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T.Fischer et al Eur. Phys. J. A50, 46

PNS deleptonization and r-process seeds:  

• Typical thermo conditions at 
the PNS surface ~5s after
the explosion onset

• Deleptonization driven by 
interactions with light 
clusters => r-process seeds

• But composition depends
on the in-medium 
modifications to the binding 
energy
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Chemical constants from multi-

fragmentation

without

with

L.Qin PRL 2012

R.Bougault & INDRA coll. JPG (2019)
H.Pais & INDRA coll. ArXiV 2020



Conclusions
• Contribution of nuclear physics experiments (and theory!) 

to the modelling of the neutrino signal in CCSN

1) Collapse and neutronization burst: essentially
governed by e-capture rates

 Residual model dependence to be benchmarked on 
experiments and calculations on sensitive nuclei

2) Early PNS cooling phase and initial conditions for r-
process nucleosynthesis: need of a reliable
modeling of the composition close to the 
neutrinosphere

=> cluster abundancies from HI collisions to settle the in-
medium binding energy shifts  




