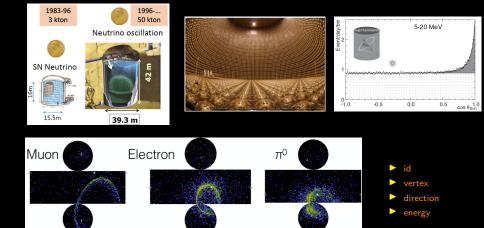
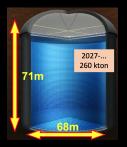
HyperKamiokande

Federico Nova

CNNP 2020

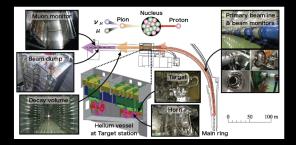


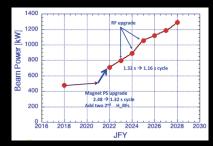
Outline:


1. detector

2. physics program

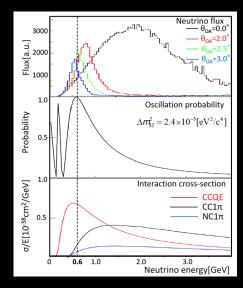
Kamiokande family


HyperKamiokande detector


	SuperKamiokande	HyperKamiokande
site	Mozumi	Tochibora
ID PMTs	11 <mark>k</mark>	40 <mark>k</mark>
	(50 cm)	(50 cm)
photo-coverage	40%	40%
		\times 2 single p.e. efficiency
OD PMTs	2 <mark>k</mark>	15 <mark>k</mark>
	(20 cm)	(7.5 cm)
mass	50 kton	260 kton
(fiducial mass)	(22.5 kton)	(188 kton)

- ► 8× SK fiducial volume
- improved photo-sensors
- project approved January 2020
- begin construction April 2020

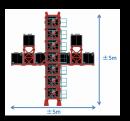
J-PARC neutrino beamline

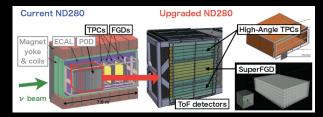


- harrow-band neutrino beam $(E \approx 600 \text{ MeV})$
- beam power to reach 1.3 MW
 - upgrade main ring (power supply, RF)
 - increase repetition rate (2.48 → 1.16 sec/cycle), keep same dynamic stress on window and target
 - increased statistics at HK

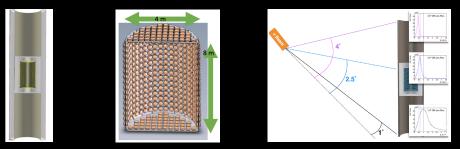
Near detector (280 m downstream)

- essential to tune fits and reduce systematics
- measure cross-sections and monitor flux before oscillations
- interaction dominated by CCQE
 - \rightarrow single ring
 - ightarrow ightarrow kinematic reconstruction of $E_{
 u}$
- interaction rates uncertainty 3%
 - \to systematic errors 5-6% in T2K
 - must be reduced to 3% for HK


Near detector (280 m downstream)

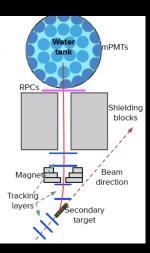

INGRID

- on-axis
- Fe + scintillator
- very sensitive to beam direction
 - (0.3 mrad already achieved in T2K)


ND280 (ECAL, P0D, TPCs, FGDs)

- magnetized detectors to identify wrong-sign ν (important for ν̄ mode where cross-section is ¹/₃)
- new: TOF detectors, high-angle TPCs, scintillator superFGD
- upgrade for finer granularity and wider solid angle

Intermediate water-Cerenkov detector



a new intermediate detector

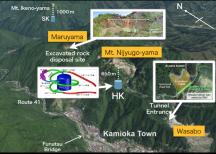
- 1 kton movable detector
- ▶ 1-2 km downstream (\rightarrow point source as $L_{\pi} = 50$ cm)
- > 50 m run height, sample different off-axis angles $(2.5^{\circ} \text{ in HK})$
- match the flux between near and far detectors
- \triangleright measure intrinsic ν_e and NC background
- b direct measurement of ν_e cross-section (main systematic in δ_{CP})
- vertex uncertainty: 2 cm
- 0.6 ns TTS from 3" PMTs (480 mPMTs)

	(C)	
	3 (B)	
	000000000	
		0
	00000	
8 12	6000	9 0 0 0
0000	0 10 10 10 10 10	0 000000
0.0	9 49 49 49 49	0.0.0.0
10	0000	0000 4
00		0.880
	00000	
	9 (B) (B) (B) (B) (B) (B)	
	9 9 8 9 9 9	
	100000	
	9999	
	8 8 W 8 8	

Intermediate water-Cerenkov detector

IWCD test beam experiment

- to be run at CERN 2021-22
- PS test beam area selected
- Cerenkov cylinder, H = 3.4 m, 2R = 3.7 m, 132 mPMT's
- ▶ test detector in beam of $p^{\pm}, e^{\pm}, \pi^{\pm}, \mu^{\pm}, n$
- low momentum (0.1-1 GeV) from decay
- motivation: proper modeling of detector response (ex. π scattering, secondary n)

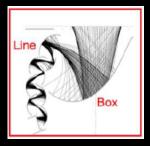


HyperKamiokande far detector site

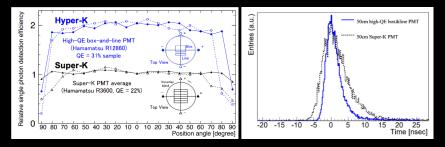
same choices as T2K:

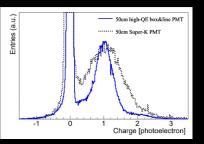
- 295 km baseline
- 2.5° off-axis angle

Photosensors: baseline choice

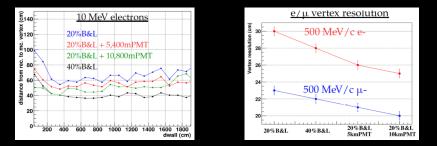

requirements:

- wide dynamic range
- high charge resolutions
- high detection efficiency
- ns time resolution (15 cm vertex)


- low background (low radioactivity glass)
- clear photon counting
- high rate tolerance
- pressure-resistant acrylic cover


baseline choice: 50 cm Hamamatsu high-efficiency QE B&L PMT

Photosensors: baseline choice


- wrt SK: 2× single p.e. efficiency
- 2× increased charge (35%, 50% in SK) and time resolution (1.1 ns transit time spread, 2.1 ns in SK)
- 2× increased pressure resistance (80 m water depth)
- 4 kHz dark rate
- 140 HK PMTs installed in SK, ready to produce

Photosensor alternative: mPMT

- concept from KM3NeT, international contribution
- module with 19 3" PMTs (economical)
- directional sensitivity
- local coincidences
- less magnetic field sensitivity
- final design early 2020

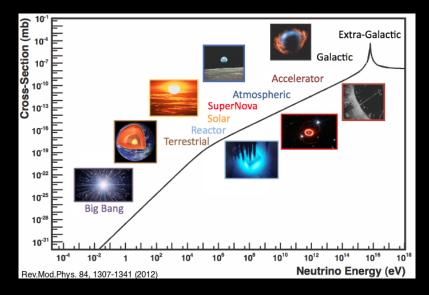
Photosensor alternative: mPMT

- ▶ finer granularity (→ better vertex resolution near detector edges, enhanced event reconstruction for multi-ring events)
- better timing resolution (0.6 ns TTS, 2× better than B&L)
- +10% fiducial volume, lower systematic uncertainties, decrease energy threshold 4.5 → 3.5 MeV (solar upturn, MSW effect)
- adopted for IWCD

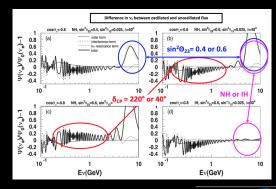
Photosensor alternative: MCP PMT and HPD

MCP PMT 50 cm

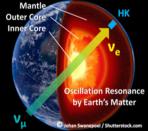
Hamamatsu HPD, 50 cm

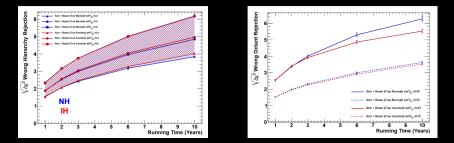

- experience in JUNO
- R&D for HK

- hybrid photodetector (with avalanche diode)
- better charge resolution
- need R&D for mass production

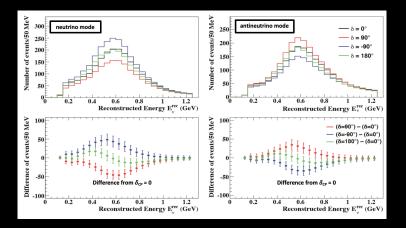

HyperK may adopt hybrid system

- ► ID: 20" B&L + mPMT/MCP/etc.
- OD: 3" or 8" PMTs + WLS plate


Very wide physics program

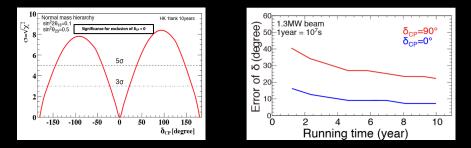

Atmospheric neutrinos

- wide energy range (peak below 1 GeV) and long travel distance
- precision mixing parameters
- \blacktriangleright ν_e flux enhanced depending on hierarchy, θ_{23} and $\delta_{\rm CP}$

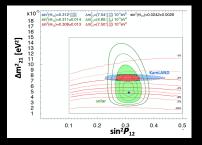


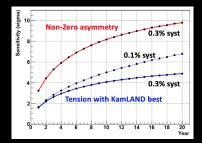
Mass hierarchy and octant sensitivity

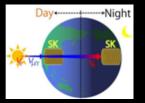
- ▶ earth matter effect for ν 's passing through core allow measurement of δ_{CP} , mass hierarchy and θ_{23} octant
- \blacktriangleright measure mass ordering at 3σ for all values of $heta_{23}$
- determine octant at 3σ for $|\theta_{23} 45^\circ| \ge 2^\circ$


beam: CP violation

 ν_e appearance in ν_μ beam

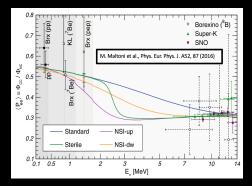

- T2K disfavour CP conservation ($\delta = 0, \pi$) at $\sim 3\sigma$ level
- effect of δ_{CP} clearly seen in reconstructed spectra (10 years, NH)

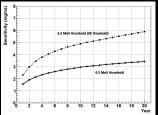

beam: CP violation



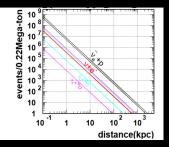
- assume 1 tank, 10 years exposure (1600 neutrino events, 1200 anti-neutrino events), normal ordering, 3-4% systematic uncertainty
- exclude $\sin \delta_{CP} = 0$ with $> 3\sigma$ for 76% of range
- measure δ_{CP} with $\pm (7^{\circ}, 22^{\circ})$ for $\sin \delta_{CP} = (0, 1)$

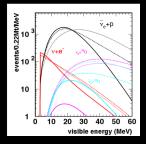
Solar neutrinos





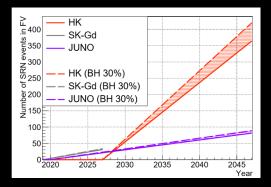
- day/night asymmetry
- regeneration of ν_e due to earth matter effect \rightarrow higher ν_e flux at night
- > 2σ tension between solar experiments and KamLAND


Solar neutrinos



- solar neutrinos up-turn: increase in low-energy survival probability
- > 3σ measurement of spectrum up-turn

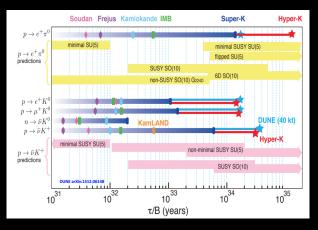
Supernovae neutrinos: $\bar{\nu}_e + p^+ \rightarrow e^+ + n$



SN location	n events/tank		
galactic centre (10 kpc)	70k		
SN1987a (50 kpc)	3k		
Andromeda (0.8 Mpc)	10		

- first and only detection of supernova neutrinos SN1987a (11 ± 8 events @ 50 kpc)
- ► 50-80k events for a 10 kpc supernova → neutrino properties, SN mechanism
- sensitive to 1 Mpc (Andromeda)
- > 1° pointing for SN alert

Supernovae relic neutrinos

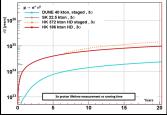


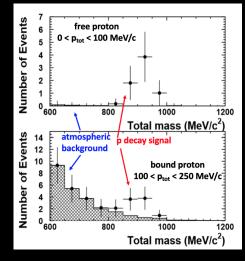
- neutrinos from all SN since the beginning of the universe
- relevant for star metallicity and black-hole formation
- SK-Gd (march 2020!) will have improved neutron tagging and can detect SRN at 10-20 MeV
- HK will measure SRN in 16-30 MeV (window limited by backgrounds: spallation and atmospheric neutrinos)

also: dark matter annihilation in the sun \rightarrow neutrinos!

Federico Nova - UK RAL - HyperKamiokande

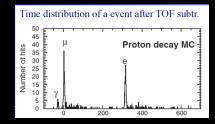
Proton decay

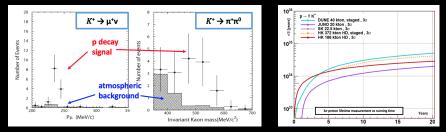

- predicted by many GUT models
- particles have less than $\frac{m_p c^2}{2} = 500$ MeV
- water Cerenkov sensitive to many decay modes
- suppress backgrounds with improved neutron tagging
- \blacktriangleright reach 10^{35} y lifetime


Federico Nova - UK RAL - HyperKamiokande

Proton decay: $p^+ \rightarrow e^+ + \pi^0$

golden channel


- favoured by many GUTs
- can see all products
- ► background-free search thanks to neutron tagging $(n + p^+ \rightarrow d + \gamma, E_{\gamma} = 2.2 \text{ MeV})$
- > 3σ discovery potential



Proton decay: $p^+ \rightarrow \bar{\nu} + K^+$

- favoured by SUSY GUT
- ► K^+ below Cerenkov threshold (visible in DUNE), detect via decay $K^+ \rightarrow \mu^+ + \nu$ (64%) or $K^+ \rightarrow \pi^+ + \pi^0$ (21%)
- prompt gamma de-excitation, followed by µ⁺ from K⁺ decay (12 ns) and e⁺ from µ⁺ decay (2 ms)

many other modes improved by 1 order

Federico Nova - UK RAL - HyperKamiokande

 3σ discovery

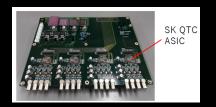
26 / 36

Timeline

JFY 2019	2020	2021	2022	2023	2024	2025	2026 PMT support	2027
	Geosurvey design	Design	Cavern ex	cavation		lining		filling
			Approach tunnel					
	Preparatory construction							
	excavated r disposal	ock	Excavated	rock disposal		1		
	disposal	Tank design						
			Electronics	Production		System	Installa	
		PMT Produ		roducuom		Tests	tion	
Beam Up	porado							
beam of	pyraue							
		Near and In	termediate D	etector				

- design report released 2018
- construction announced in 2018 by University of Tokyo
- project approved in Japan (MEXT budget announcement 2019)
- begin construction April 2020
- data taking 2027

Summary


HyperKamiokande is the next-generation neutrino experiment

- \triangleright 8× larger than SK
- improved photo-sensors
- upgraded 1.3 MW beam
- intermediate water Cerenkov to reduce systematic errors
- rich physics program
 - > precise neutrino oscillation: δ_{CP} , mass ordering
 - astrophysics: solar neutrinos, supernovae etc.
 - new physics: proton decay, dark matter ...
- construction starts 2020, data taking 2027

Back-up slides

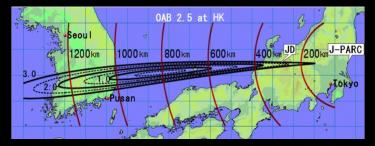
Electronics

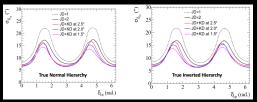
- electronics timing resolution < PMT TTS</p>
- frontend electronics and HV module in water
- timing delivered by GPS
- communication via fiber (200 m)
- large buffer for SN burst
- prototype developed with: SK QTC ASIC (charge to time), FPGA TDC 4GHz
- electronics resolution: 0.2 ns at 1 p.e., 10% charge resolution at 1 p.e., 2000 p.e. range with 1% linearity

mPMT electronics:

- 0.4 ns for 1 p.e., 0.1 ns for larger pulses
- charge resolution: 0.05 to 25 p.e.
- power consumption: 3-4 W/mPMT for HK (driven by water circulation requirements), 5-10 W/mPMT for IWCD

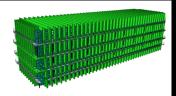
Systematic errors

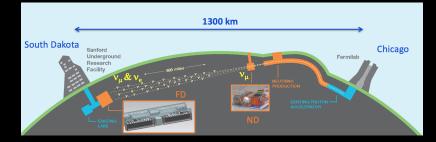

- statistical error will be 3% in HK
- require 3% systematic error on interaction rates (through upgraded ND280 and IWCD)


Source of uncertainty	$\nu_{\mu} CC$	$\nu_{\rm e} CC$	$\bar{\nu_{\mu}} CC$	$\bar{\nu_e} CC$
Flux and common cross sections				
(w/o ND280 constraint)	10.8%	10.9%	11.9%	12.4%
(w/ ND280 constraint)	2.8%	2.9%	3.3%	3.2%
Unconstrained cross sections	0.8%	3.0%	0.8%	3.3%
SK	3.9%	2.4%	3.3%	3.1%
FSI + SI(+ PN)	1.5%	2.5%	2.1%	2.5%
Total				
(w/o ND280 constraint)	11.9%	12.2%	13.0%	13.4%
(w/ ND280 constraint)	5.1%	5.4%	5.2%	6.2%

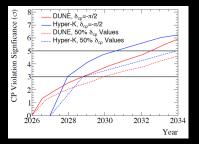
	Required Precision			Achievable Precision
$\sigma(v_{k})/\sigma(v_{\mu})$	3-5%	$ \begin{array}{l} CP \mbox{ Violation,} \\ \delta_{ep} \mbox{ precision at } \sin(\delta_{ep}) {} 0, \\ \theta_{23} \mbox{ precision at } \sin(\theta_{23}) {-} 0.5 \end{array} $	IWCD	3.5-5%
$\sigma(\nabla_k)/\sigma(\nabla_p)$	3-5%	CP Violation, δ_{tp} precision at $sin(\delta_{tp}) - 0$, θ_{23} precision at $sin(\theta_{23}) - 0.5$	IWCD	4-7%
Wrong-sign background normalization	9%	$\begin{array}{c} CP \mbox{ Violation,} \\ \delta_{tp} \mbox{ precision at } sin(\delta_{tp}) \!-\! 0 \end{array}$	ND280	TBD (expect <9%)
Intrinsic v _e V _e and NC backgrounds	3-4%	$\begin{array}{c} CP \mbox{ Violation,} \\ \delta_{sp} \mbox{ precision at } sin(\delta_{sp}) \! - \! 0 \end{array}$	IWCD	2.3% (neutrino)
Normalization of non- QE with E _v >0.7 GeV	5%	θ_{23} precision at $\sin(\theta_{23}) \neq 0.5$	IWCD	5% (neutrino)
Normalization of non- QE with all energies	5%	δ_{ip} precision at $\sin(\delta_{ip})\!-\!0$ $\Delta m^2_{32} \ precision$	IWCD, ND280*	5% (IWCD neutrino) <4% (N280 neutrino) <7% (ND280 antineutrino)

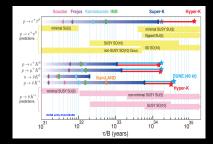
Systematic Source	Required Precision	For Which Measurement	Detector	Achievable Precision
Beam Direction	0.6 mrad (4 MeV shift)	$\begin{array}{c} \delta_{qp} \ precision \ at \ sin(\delta_{qp}) {\sim} 0 \\ \Delta m^2_{32} \ precision \end{array}$	INGRID	<0.3 mrad (<2 MeV)
Removal (binding) energy	4 MeV*	δ_{cp} precision at $sin(\delta_{cp}){-}0$ $\Delta m^2{}_{32} \mbox{ precision}$	IWCD, ND280	2.6 MeV (IWCD on O) −1 MeV (ND280 on C)**
High angle measurement (cos8<0.2)	4%	CP Violation, $\delta_{qp} \mbox{ precision at } sin(\delta_{qp}){\sim}0$	IWCD, ND280	<4% statistical precision in both detectors
Beam rate monitoring	~1% per day	General monitoring of beam quality	INGRID	<0.5% per day for neutrinos and antineutrinos
Neutron Multiplicity	TBD	Atmospheric neutrino Nucleon decay	IWCD, ND280	<5% IWCD <4% ND280
µnt ⁰ cross section & neutron multiplicity	TBD	en ⁰ proton decay	IWCD	TBD


Second tank in Korea


- 1100 km
- 2nd oscillation maximum
- higher precision on δ_{CP}

HyperK and DUNE



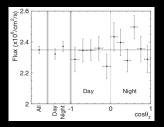

20→40kton liquid Ar

 HK: 188 kton water, 1.3 MW beam
 DUNE: 20 → 40 kton liquid Ar, 1.2 → 2.4 MW beam

HyperK and DUNE

- similar sensitivities for δ_{CP}
- similar sensitivities for proton decay
 - ▶ DUNE has excellent event reconstruction, high efficiency, low backgrounds, golden $p^+ \rightarrow \bar{\nu} + K^+$
 - \blacktriangleright HK has larger volume and covers several decay modes, golden $p^+ \to e^+ + \pi^0$

supernovae


- DUNE observes $\nu_e \rightarrow$ time and flavour profile of collapse
- HK has larger mass (188 kton vs 20/40 kton fiducial mass)

HyperKamiokande protocollaboration



SuperK results on solar and atmospheric neutrinos

- measured 45% flux of electron neutrinos w.r.t. no oscillation
- \blacktriangleright same flux by day and by night \Longrightarrow no matter effect in Earth
- seasonal modulation due to Earth orbit eccentricity, consistent with no vacuum oscillation => matter effect in Sun

- detect neutrinos of $10^{-1} - 10^5$ GeV

- asymmetry $rac{\phi_{
 m up} \phi_{
 m down}}{\phi_{
 m up} + \phi_{
 m down}} = -0.3$ for u_{μ} (no asymmetry for u_{e})
- ratio ^{φup}/_{φdown} = 0.6 for ν_μ and 1 for ν_e ⇒ ν_μ disappear, not into ν_e
- 2015 nobel prize

Federico Nova - UK RAL - HyperKamiokande

$$\begin{split} \nu_{\mu} \leftrightarrow \nu_{\tau} \quad \text{(vacuum)} \\ \theta_{23} &= 0.79 = 45^{\circ} \\ \left| m_3^2 - m_2^2 \right| &= 2.4 \cdot 10^{-3} \left(\frac{\text{eV}}{c^2} \right)^2 \end{split}$$