

First results from the neutrino mass experiment KATRIN

Christian Weinheimer – University of Münster CNNP 2020, Cape Town, South Africa, February 24-28, 2020

- Introduction
- The KArlsruhe TRItium Neutrino experiment KATRIN
- First results from KATRIN
- Outlook
- Conclusions

Westfälische Wilhelms-Universität Münster

living.knowledge

Three complementary ways to the absolute neutrino mass scale

- 1) Cosmology very sensitive, but model dependent compares power at different scales current sensitivity: $\Sigma m(v_i) \approx 0.12 \text{ eV}$
- 2) Search for 0_Vββ Sensitive to Majorana neutrinos, model-dependent Upper limits by EXO-200, KamLAND-Zen, GERDA, CUORE
- 3) Direct neutrino mass determination: No further assumptions needed, use $E^2 = p^2c^2 + m^2c^4$ $\Rightarrow m^2(v)$ is observable mostly

 Time-of-flight measurements (v from supernova)
Kinematics of weak decays / beta decays, e.g. tritium, ¹⁶³Ho measure charged decay prod., E-, p-conservation

Comparison of the different approaches to m(v)

Direct determination of "m(v_e)" from β -decay (EC)

β-spectrum: dN/dE = K F(E,Z) p
$$E_{tot}$$
 (E_0-E_e) $\Sigma |U_{ei}|^2 \sqrt{(E_0-E_e)^2 - m(v_i)^2}$
essentially phase space: $p_e E_e E_v$ E_v p_v

with "electron neutrino mass": " $m(v_e)^2$ " := $\sum |U_{ei}|^2 m(v_i)^2$, complementary to $0v\beta\beta$ & cosmology (modified by electronic final states, recoil corrections, radiative corrections)

WWU

Direct determination of "m(v_e)" from β -decay (EC)

β-spectrum: dN/dE = K F(E,Z) p
$$E_{tot}$$
 (E_0-E_e) $\Sigma |U_{ei}|^2 \sqrt{(E_0-E_e)^2 - m(v_i)^2}$
essentially phase space: $p_e E_e E_v$ E_v p_v

WWU

with "electron neutrino mass": " $\mathbf{m}(v_e)^2$ " := $\Sigma |U_{ei}|^2 \mathbf{m}(v_i)^2$, complementary to $0v\beta\beta$ & cosmology (modified by electronic final states, recoil corrections, radiative corrections)

70 m beamline

3H

KATRIN at Karlsruhe Institute of Technology working principle

CNNP South Africa, February 2020

column density pd [1017 molecules / cm2]

Rear calibration and monitoring system

In reality: source & transport section

The KATRIN Main Spectrometer: an integrating high resolution MAC-E-Filter

0.2

0.15E

0.1 0.05

-0.5

0.5

E-U (eV)

Ultra-high vacuum, pressure < 10⁻¹¹ mbar

Retardation voltage of -18.6 kV ($\sigma < 60 \text{ mV/years}$) at vessel and double layer wire electrode system for background reduction and electric potential shaping

Air coils for earth magnetic field compensation and magnetic field shaping

Energy resolution:

NP South Africa, February 2020

 $(0\% \rightarrow 100\%$ transmission): 0.93 (2.7) eV

Christian Weinheimer

function:

 $\Delta \mathbf{E} = \mathbf{E} \cdot \mathbf{B}_{\min} / \mathbf{B}_{\max}$

= 0.93 eV (2.7 eV)

Focal Plane Detector

Focal plane detection system

- segmented Si PIN diode: 90 mm Ø, 148 pixels, 50 nm dead layer energy resolution \approx 1 keV pinch and detector magnets up to 6 T post acceleration (10kV)
- active veto shield

8 sources of background investigated and understood:

7 out of 8 avoided or actively eliminated by:

- fine-shaping of electrodes
- very symmetric magnetic fields
- more negative wire electrode potentials
- LN2-cooled baffles in front of NEG pumps

1 out of 8 remaining:

caused by ²¹⁰Pb on spectrometer walls neutral, but highly excited (Rydberg) atoms ionized by black-body radiation (300K) inside spectrometer volume

Background due to ionization of Rydberg atoms sputtered off by α decays

Rydberg (or autoionsing) atoms:

- ejected from walls due to ²⁰⁶Pb recoil ions from ²¹⁰Po decays
- ionized by black body radiation (291 K)
- non-trapped electrons on meV-scale
- bg-rate: ~0.5 cps

Testing this hypothesis:

artifically contaminating the spectrometer with implanted short-living daughters of ²²⁰Rn (and ²¹⁹Rn)

Countermeasures:

- apply stronger voltage at wires (field ionisation)
- reduce flux tube (on cost of energy resolution)
- shift analysis plane (tested, planned for 2020)
- active de-excitation ?
- coverage of surface with clean layer ?

Measuring the response with ^{83m}Kr

30

(also used to study plasma)

KATRIN Collab., "High-resolution spectroscopy of gaseous ^{83m}Kr conversion electrons with the KATRIN experiment", arXiv:1903.06452 KATRIN Collab., "Calibration of high voltages at the ppm level by the difference of 83mKr conversion electron lines at the KATRIN experiment", Eur. Phys. J. C 78 (2018) 368

Christian Weinheimer

First Tritium (2-week engineering run in 2018)

- low tritium concentration:
 - ~1% DT and ~99% D_2

WWU

- functionality of all system components at nominal column density $\rho d~(5\cdot 10^{17}~cm^{-2})$

KATRIN Collab., "First operation of the KATRIN experiment with tritium", arXiv:1909.06069, accepted for publication by EPJ C

First tritium campaign: Stability of source parameters during 12 h

KATRIN science run #1

- 4-week long measuring campaign in spring 2019 with high-purity tritium
- April 10 May, 13 2019: 780 h
- high-purity tritium

(ε_{T} = 97.5 % by laser-Raman spectr.)

- high source activity (22% nominal): 2.45 · 10¹⁰ Bq
- high-quality data collected
- full analysis chain using two independent methods

KATRIN science run #1

first ever large-scale throughput of high-purity tritium in closed loops

- 22% of nominal source activity (column density)

⇒ limits effects due to radiochemical
reactions of T₂ (initial "burn in" effect)

- high isotopic tritium purity

4.99

⇒ T₂ (95.3 %), HT (3.5 %), DT (1.1 %)

day

Fitting tritium ß-decay spectrum

High-statistics ß-spectrum

- 2 million events in in 90-eV-wide interval (522 h of scanning, 274 indiv. scans)
- fit with 4 free parameters: $m^{2}(v_{e}), R_{bg}, A_{s}, E_{0}$ excellent goodness-of-fit $\chi^{2} = 21.4$ for 23 d.o.f. (p-value = 0.56)
- Bias-free analysis
 - blinding of FSD
 - full analysis chain first on MC data sets
 - final step: unblinded FSD for experimental data

Analysis methods and v-mass result

Moore's law of direct v-mass sensitivities*

KATRIN 2019 – 2024: a new, much steeper slope for Moore's law

WWU

Improving signal-to-background ratio

Signal increase

WWU

⇒ science run 2 in fall 2019 with
83% nominal column density

Background reduction

⇒ "shifted analyzing plane" (SAP)

by segemented wire electrode system

& upgraded air coil system \blacksquare

- \rightarrow factor >2 signal-to-background improvement
- \Rightarrow spectrometer bake-out successful \blacksquare
- \Rightarrow more effective LN₂-cooled baffles
 - by pumping \rightarrow lowering temperature
 - \rightarrow better ²¹⁹Rn retention

Outlook: keV sterile neutrino search with KATRIN

- 4-th mass eigenstate of neutrino mixed with the flavour eigenstates
 - particle beyond the standard model
 - Dark matter candidate
- Look for the kink in the $\beta\mbox{-spectrum}$
- TRISTAN project in KATRIN
 - developing a new detector & DAQ system

S. Mertens et al., J.Phys. G46 (2019) 065203; T. Brunst et al., JINST 14 (2019) P11013

- large count rates
- good energy resolution
- Silicon Drift Detector

<u>+</u>	
	WWU
	MÜNSTER

Conclusions

Neutrino masses are

- very important for astrophysics & cosmology & particle physics

KATRIN:

- is the direct neutrino mass experiment complementary to cosmological analyses and $0\nu\beta\beta$ searches
- has performed successful first neutrino mass science run in 2019 yielding a limit of 1.1 eV for the neutrino mass
- is analyzing science run 2 (higher statistics) and is preparing science run 3 (lower bg)
- has the sensitivity goal of 200 meV for 5 years running
- can also look for sterile neutrinos (eV, keV with TRISTAN det.) and other BSM physics Thank you for your attention !

Beyond KATRIN:

- Can we upgrade KATRIN by time-of-flight or cryo-bolometer to differential mode?
- ¹⁶³Ho micro calorimeters (ECHo, HOLMES, ...)
- New ideas like Project 8, ...

3 very important founding members passed away on the long road of KATRIN

M. Lobashev Ernst-W. Otten 1934 - 2011 1934 - 2019