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Three complementary ways to the
absolute neutrino mass scale

1)  Cosmology
very sensitive, but model dependent
compares power at different scales
current sensitivity: Σm(νi)  0.12 eV 

2) Search for 0νββ  
Sensitive to Majorana neutrinos, model-dependent 
Upper limits by EXO-200, KamLAND-Zen, GERDA, CUORE

        
3) Direct neutrino mass determination:
   No further assumptions needed, use E2 = p2c2 + m2c4   

 m2(ν) is observable mostly 

        Time-of-flight measurements (ν from supernova) 
   Kinematics of weak decays / beta decays, e.g. tritium, 163Ho

measure charged decay prod., E-, p-conservation
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Neutrinolesss double β decay: m
ββ
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2| eiα(i) m(νi)|   (coherent)

if no other particle is exchanged (e.g. R-violating SUSY) & w/o uncertainties of NME M and quenching of g
A
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Direct determination of “m(νe)'' from β-decay (EC)

 

 

β-spectrum: dN/dE = K  F(E,Z)  p  Etot  (E0-Ee)  Σ |Uei|2  (E0-Ee)2 – m(νi)2                                                         

with “electron neutrino mass”: ”m(νe)2 ” :=  Σ |Uei|2  m(νi)2 , complementary to 0νββ & cosmology
(modified by electronic final states, recoil corrections, radiative corrections)

     essentially phase space:    pe   Ee        Eν                                pν

Eν pν →
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     essentially phase space:    pe   Ee        Eν                                pν

Eν pν →  Need: low endpoint energy   Tritium 3H (163Ho)
large decay rate (super-allowed) E0=18.6 keV, t1/2=12.3 yr   

very high energy resolution 
 very high luminosity      MAC-E-Filter          

very low background       (or cryobolometers for 163Ho)
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windowless
gaseous T2 source

1011 e- / s

counting detector
< 1 e- / s

tritium pumping
& e- transport

T2 flow reduction >1014

high-pass energy filters
MAC-E-Filter

pre-filter 
~103 e- / s

main filter
U = -18.6 kV
ΔE ~1 eV 148 pixels

“dartboard" layout

70 m beamline

KATRIN at Karlsruhe Institute of Technology
working principle
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The KATRIN 
Windowless Gaseous Molecular Tritium Source

beam tube Ø = 9 cm , L = 10 m
guiding field 3.6 T  (2.52 T)
temperature T = 30 K ± 30 mK,
T2 flow rate 5·1019 molecules/s  (40 g of T

2
 / day)

T2 purity 95% ± 0.1 %
T2 inlet pressure 10-3 mbar ± 0.1 %

column density    5·1017 T2/cm2        luminosity 1.7·1011 Bq

WGTS at Tritium Laboratory Karlsruhe

T2
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photo-
electrons

cold tritium plasma

e- and ions: T+, T3+,…, T-

Au-surface
controls
magnetized
cold plasma
of windowless 
gaseous 
tritium source

(pulsed) 
monoenergetic, 
angular-selective
UV photo-electron 
source

VUV-illumination of rear wall
& BIXS monitors

Rear calibration and monitoring system
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In reality: source
& transport section
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The KATRIN Main Spectrometer:
an integrating high resolution MAC-E-Filter

Ultra-high vacuum, pressure < 10-11 mbar
 

Retardation voltage of -18.6 kV (σ < 60 mV/years) 
at vessel and double layer wire electrode system
for background reduction 
and electric potential shaping
 

Air coils for earth magnetic 
field compensation and 
magnetic field shaping

 

Energy resolution: 
(0% → 100% transmission): 
0.93 (2.7) eV

→ integral     
transmission 

function: 

ΔE = EBmin/Bmax 
= 0.93 eV   (2.7 eV)
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PINCH MAGNET
DETECTOR MAGNET

DETECTOR

SUPPORT STRUCTURE

VACUUM, CALIBRATION SYSTEM

ELECTRONICS

Focal Plane Detector

Focal plane detection system
 
segmented Si PIN diode:

90 mm Ø, 148 pixels, 50 nm dead layer
 

energy resolution ≈ 1 keV
 

pinch and detector magnets up to 6 T
 

post acceleration (10kV)
 

active veto shield

pre-amplifier wheel

segmented Si-PIN wafer

detector and pinch magnet 
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Background sources at KATRIN: 
detailed understanding, but ...

8 sources of background investigated and understood:

7 out of 8 avoided or actively eliminated by:   1 out of 8 remaining:
  - fine-shaping of electrodes    caused by 210Pb on spectrometer walls
  - very symmetric magnetic fields    neutral, but highly excited (Rydberg) atoms
  - more negative wire electrode potentials    ionized by black-body radiation (300K)
  - LN2-cooled baffles in front of NEG pumps    inside spectrometer volume 13 
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Background due to ionization of Rydberg atoms 
sputtered off by α decays

τ = τ(212Pb) = 10.6 h

Rydberg (or autoionsing) atoms: 
    - ejected from walls due to 206Pb recoil ions

from 210Po decays
    - ionized by black body radiation (291 K)
    - non-trapped electrons on meV-scale
    - bg-rate: ~0.5 cps

Countermeasures:
    - apply stronger voltage at wires (field ionisation)
    - reduce flux tube (on cost of energy resolution)
    - shift analysis plane (tested, planned for 2020)
    - active de-excitation ?
    - coverage of surface with clean layer ?

Testing this hypothesis:
artifically contaminating 
the spectrometer with 
implanted short-living 
daughters of 220Rn (and 219Rn)
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Measuring the response with 83mKr

●  MAC-E filter characteristics well understood 
●  (also used to study plasma)        

L3-32 line: 30.47 keV

filter width

γ Eγ = 32.15 keV

Eγ = 9.4 keVγ

L3-32

E
B
B

E
E


Δ

max

min

KATRIN Collab., “High-resolution spectroscopy of gaseous 
     83mKr conversion electrons with the KATRIN experiment”, arXiv:1903.06452
KATRIN Collab.,“Calibration of high voltages at the ppm level by the 
    difference of 83mKr conversion electron lines at the KATRIN experiment”,  
    Eur. Phys. J. C 78 (2018) 368 Retarding energy (eV)

J P=5 /2-

J P=1 /2-

J P=7 /2+

J P=9/2+
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   First Tritium (2-week engineering run in 2018)

KATRIN Collab., “First operation of the KATRIN experiment with tritium”, 
arXiv:1909.06069, accepted for publication by EPJ C

deep scan possible due to „low“ ß-activity

χ2 = 13.8 for 18 dof

- low tritium concentration: 
   ~1% DT and ~99% D2

- functionality of all system components
  at nominal column density ρd (5·1017 cm-2)  
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Red dashed line:
± 0.1 % stability 
required for 
neutrino mass 
data taking

Blue arrow:
systematic 
uncertainty 

→ source parameters
were proven 

to be stable and 
within the 

specifications

First tritium campaign:
Stability of source parameters during 12 h
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KATRIN science run #1

"  4-week long measuring campaign in spring 2019 with high-purity tritium  

- April 10 – May, 13 2019:   780  h

- high-purity tritium 
(εT = 97.5 % by laser-Raman spectr.)

- high source activity (22% nominal):     
2.45 · 1010 Bq

- high-quality data collected

- full analysis chain using two 
independent methods 
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column density ρd (1017 mol. cm-2) 
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l. 
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1.08           1.10           1.12           1.14

± 2.4 %

first ever large-scale throughput of high-purity tritium in closed loops

- high isotopic tritium purity    
      # T2 (95.3 %), HT (3.5 %), DT (1.1 %)

- 22% of nominal source activity (column density)     
    # limits effects due to radiochemical
        reactions of T2 (initial „burn in“ effect)  

KATRIN science run #1
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5 HV set points22 HV set points

single tritium scan 
and fit

E0

Tritium scanning strategy

"  274 scans of tritium ß-spectrum:  

- alternating up- / down- scans

- 2 h net scanning time

- analysis: 27 HV set points

- [ E0 – 40 eV , E0 + 50 eV]

   still limited       bg-slope

Measurement point distribution
maximises ν-mass sensitivity

- focus on region close to E0
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Determination of response function

"  Shooting electrons from monoenergetic 
     pulsed UV-laser photoelectron source 
     through tritium column density
     Eur. Phys. J. C77 (2017) 410, Astropart. Phys. 89 (2017) 30

Normal integral MAC-E-Filter mode

monoenergetic & single angle e - β from tritium decays

windowless gaseous molecular tritium sourcee-gun towards the spectrometers

21 Christian Weinheimer           CNNP South Africa, February 2020

Determination of response function

"  Shooting electrons from monoenergetic 
     pulsed UV-laser photoelectron source 
     through tritium column density
     Eur. Phys. J. C77 (2017) 410, Astropart. Phys. 89 (2017) 30

Normal integral MAC-E-Filter mode

monoenergetic & single angle e - β from tritium decays

windowless gaseous molecular tritium sourcee-gun towards the spectrometers



22 Christian Weinheimer           CNNP South Africa, February 2020

Determination of response function

"  Shooting electrons from monoenergetic 
     pulsed UV-laser photoelectron source 
     through tritium column density
     (Eur. Phys. J. C77 (2017) 410, Astropart. Phys. 89 (2017) 30)

co
un

t r
at

e 
(c

ps
)

Ramp up beam energy at fixed Uret

tim
e 

of
 fl

ig
ht

 (µ
s)

0          12          24          36         48
      surplus energy  (eV)

“Differential Time-of-flight mode”
Nucl. Inst. Meth. A 421 (1999) 256, 

Time-of-flight of electrons from pulsed e-gun (70 ns at 20 kHz): 
→ High-pass filter turned into narrow band-pass 
→ recover “differential” spectrum

monoenergetic & single angle e- β from tritium decays

windowless gaseous molecular tritium sourcee-gun towards the spectrometers
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1-fold, 2-fold, 3-fold inelastic scattering

monoenergetic & single angle e- β from tritium decays

windowless gaseous molecular tritium sourcee-gun towards the spectrometers
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     through tritium column density
     (Eur. Phys. J. C77 (2017) 410, Astropart. Phys. 89 (2017) 30)

Normal integral MAC-E-Filter mode

Differential Time-of-flight mode
Nucl. Inst. Meth. A 421 (1999) 256, 
New J. Phys. 15 (2013) 113020 d

Deconvoluted differential energy loss function

M. Aker et al. (KATRIN Collaboration)
Phys. Rev. Lett. 123 (2019) 221802 

1-fold, 2-fold, 3-fold inelastic scattering

monoenergetic & single angle e- β from tritium decays

windowless gaseous molecular tritium sourcee-gun towards the spectrometers
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Modeling of experimental data

E0single tritium scan 
and fit

E0

"  Beta spectrum: Rβ(E,m2(νe))

"  Experimental response: f(E-qU)
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Fitting tritium ß-decay spectrum

"   High-statistics ß-spectrum
- 2 million events in
   in 90-eV-wide interval 

         (522 h of scanning, 274 indiv. scans)
- fit with 4 free parameters:
  m2(νe), Rbg, As, E0

   excellent goodness-of-fit
   χ2 = 21.4 for 23 d.o.f. 

         (p-value = 0.56)
"   Bias-free analysis

- blinding of FSD
- full analysis chain first on
   MC data sets 
- final step: unblinded FSD
   for experimental data

 

 

   M. Aker et al. (KATRIN Collaboration)
Phys. Rev. Lett. 123 (2019) 221802 

neutrino mass square m2(νe)

Retarding energy (eV)
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Analysis methods and ν-mass result

"   two independent analysis methods
to propagate uncertainties & infer parameters

- Covariance matrix:
   covariance matrix + χ2-estimator

- MC propagation:
   105 MC samples + likelihood (-2 ln L)

- both methods agree to a few percent

"    ν-mass and E0: best fit results

    m2(νe) = -1.0 +0.9 -1.1 eV2   (90% C.L.)

→ m(νe) < 1.1 eV at 90% CL (Lokhov-Tchakev)
→ m(νe) < 0.8 eV (0.9 eV) at 90% (95%) CL (Feldman-Cousins)

E0 = (18573.7 ± 0.1) eV     →  Q-value :         (18575.2 ± 0.5) eV   
E.G. Myers et al., PRL 114 (2015) 013003: Q-value [ΔM(3H,3He)]: (18575.72 ± 0.07) eV    

M. Aker et al. 
(KATRIN Collab.)

Phys. Rev. Lett. 123 
(2019) 221802 
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              Moore´s law of direct ν-mass sensitivities*

KATRIN 2026/7:
m(νe) < 0.2 eV (90% CL)
      or = 0.35 eV (5 σ)

quasi-degenerate masses

"    KATRIN 2019 – 2024: a new, much steeper slope for Moore´s law   

KATRIN 2019 
               m(νe)  < 1.1 eV (90% CL)

*courtesy of JF Wilkerson 
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AP SAP

Improving signal-to-background ratio

" Signal increase
# science run 2 in fall 2019 with 

83% nominal column density

" Background reduction
# „shifted analyzing plane“ (SAP) 

by segemented wire electrode system

& upgraded air coil system ! 

→ factor >2 signal-to-background improvement

# spectrometer bake-out successful !

# more effective LN2-cooled baffles 

– by pumping → lowering temperature 

    → better 219Rn retention 

Two large air coil systems:
background suppression & B-field shaping
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Signal of 
keV sterile
neutrino

(exaggerated)

M.Kleesiek 
PhD thesis 
KIT (2014) 

Other interesting searches for physics
beyond the Standard Model 

keV ν
see e.g. 

S. Mertens et al., JCAP 02 (2015) 020
M. Drewes et al. JCAP 01 (2017) 025

non SM currents, additional light bosons, ...
see e.g.: N. Steinbrink et al., JCAP 6 (2017) 15 (RH currents & sterile ν), G. Arcadi et al., JHEP 1901 (2019) 206 (light bosons)

dN/dE = K  F(E,Z)  p  Etot  (E0-Ee) ( cos2(θ) (E0-Ee)2 – m(ν1,2,3)2  +  sin2(θ) (E0-Ee)2 – m(ν4)2 )
Sterile neutrinos

eV ν:

see e.g.:
J. A. Formaggio, J. Barret, PLB 706 (2011) 68 
A. Sejersen Riis, S. Hannestad, JCAP02 (2011) 011
A. Esmaili, O.L.G. Peres, arXiv:1203.2632
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Outlook: 
keV sterile neutrino search with KATRIN

● 4-th mass eigenstate of neutrino
mixed with the flavour eigenstates 

- particle beyond the standard model
- Dark matter candidate

● Look for the kink in the β-spectrum
● TRISTAN project in KATRIN

- developing a new detector & DAQ system
– large count rates
– good energy resolution
– Silicon Drift Detector

E(keV)

Signature of 
sterile neutrino
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S. Mertens et al., J.Phys. G46 (2019) 065203; T. Brunst et al., JINST 14 (2019) P11013
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Neutrino masses are 
- very important for astrophysics & cosmology & particle physics 

KATRIN:  
-  is the direct neutrino mass experiment complementary

to cosmological analyses and 0νββ searches

-  has performed successful first neutrino mass science run in 2019
yielding a limit of 1.1 eV for the neutrino mass

-  is analyzing science run 2 (higher statistics) and is preparing science run 3 (lower bg)

-  has the sensitivity goal of 200 meV for 5 years running 

-  can also look for sterile neutrinos (eV, keV with TRISTAN det.) and other BSM physics  

Beyond KATRIN: 

-  Can we upgrade KATRIN by time-of-flight or cryo-bolometer to differential mode?

-  163Ho micro calorimeters (ECHo, HOLMES, …)

-  New ideas like Project 8, ..

3 very important founding members passed away on the long road of KATRIN

Thank you for your attention !

Conclusions
Cern Courier, Jan/Feb 2020
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