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Ab Initio Nuclear Structure
Often starts with chiral effective-field theory

Nucleons, pions sufficient below chiral-symmetry breaking scale.
Expansion of operators in powers of Q/A,.

Q = my or typical nucleon momentum.
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At each “order;” only a finite
number of operators exist.




Ab Initio Many-Body Methods

Partition of Full Hilbert Space
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Ab Initio Many-Body Methods

Partition of Full Hilbert Space

P Q
P = subspace you want
P | Hes Q = the rest
*
Task: Find unitary transformation to
make H block-diagonal in Pand Q,
with H.« in P reproducing most
Q As difficult as solving original problem. nvalues.
But many-body effective operators (beyond .
2- or 3-body) can be treated approximately. ly same ypltary
to transition
|\ | operator.

Simpler calculation done here.



In-Medium Similarity Renormalization Group

One way to determine the transformation

Flow equation for effective Hamiltonian.
Gradually decouples selected set of states.

V [MeV fm?]
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ T B0

from H. Hergert

Trick is to keep all 1- and 2-body terms in H at each step after
normal ordering (approximate treatment of 3-, 4-body ...terms).

If selected set contains just a single state, approach yields
ground-state energy. If it contains a typical valence space, result is
effective shell-model interaction and operators.



New Ildea: Reference State with Collective Correlations

Background: Generator Coordinate Method

Construct set of mean fields by constraining coordinate(s), e.g.
quadrupole moment (Qg). Then diagonalize H in space of
symmetry-restored quasiparticle vacua with different (Qo).

Potential energy surface Collective wave functions
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In-Medium GCM for Decay of “8Ca

GCM Reference States for IMSRG

By

Potential Energy Surfaces
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48Ca is spherical and “8Ti is weakly deformed.



Spectrum in 48Ti
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Smaller fiw gives a bit more collectivity.



Variation with BE2 and Summary of Results
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The green band is our best guess for the matrix element.



Axial Weak Current in Chiral EFT

B Decay (simplified) with electron lines omitted

Leading order:

ga

Usual S-decay current
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Axial Weak Current in Chiral EFT

B Decay (simplified) with electron lines omitted

Leading order:

n
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Usual B-decay current

Higher order:
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Consider very simple wave function
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Quenching in the sd and pf Shells

|Mqr| Experiment

4 this work
O shell model

1 2
|Mcr| Theory (unquenched)
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IMSRG calculation, Holt et al
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Some quenching from correlations omitted by the shell model.

But a lot comes from the two-body current.



What about in 3 Decay

Usual leading-order process
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Leading Corrections

Example of diagram included by
Klos, Menéndez, Schwenk,Gazit:
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Effective two-body operator

neutrons
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Leading Corrections

Example of diagram included by
Klos, Menéndez, Schwenk,Gazit:

One-body current acts first.

The bottom contributions
1. don't affect single-B decay
Eff 2. make quenching of OvBpB decay less important.

Example of corrections:
pr AP o0

protons neutrons
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Divergent Contributions

p I N p . .
14
- - - -
T
T A AN protons neutrons

Neutron can be excited to any empty
level.

Can “tame” the divergence with form factors,

but effective field theory says that there is a b b
short-range contribution beyond what is

usually considered in nuclear models. Appears

as contact counter-term with coefficient that is " n

unknown.



More on Counter-Terms
PHYSICAL REVIEW LETTERS

Highlights ~ Recent ~ Accepted  Collections  Authors

p p
Usual light neutrino exchange: v
n n
must be supplemented, even at leading order in P

chiral EFT, by short-range operator (representing
high-energy v exchange):

Coefficient of this leading-order term is also
unknown. Results in uncertainty of order 100%

Collaboration members are to estimating it.
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So, to Sum Up...

1. Chiral EFT + new many-body methods are the tools required
to compute matrix elements with controlled uncertainty. We
currently have results for #8Ca, working on 76Ge.

2. Quenching of single 8 decay mostly understood in this

That’s all; thanks.

3. re
contribution to neutrino exchange with unknown coefficient.
We'e investigating. ..

ed

4. A similar issue hampers our ability to fully examine effects of
the two-body current in Ov3 S decay, though the part for
which we do know coefficients doesn't quench very much.



