Double-Beta Decay from First Principles

J. Engel

February 26, 2019

CONFERENCE ON NEUTRINO AND NUCLEAR PHYSICS 20 20

DBD Topical Theory Collaboration

DBD Topical Theory Collaboration

DBD Topical Theory Collaboration

Ab Initio Nuclear Structure

Often starts with chiral effective-field theory

Nucleons, pions sufficient below chiral-symmetry breaking scale. Expansion of operators in powers of Q/Λ_{χ} .

 $Q = m_{\pi}$ or typical nucleon momentum.

Partition of Full Hilbert Space

P = subspace you want Q = the rest

Task: Find unitary transformation to make H block-diagonal in P and Q, with $H_{\rm eff}$ in P reproducing most important eigenvalues.

Partition of Full Hilbert Space

P = subspace you want Q = the rest

Task: Find unitary transformation to make H block-diagonal in P and Q, with $H_{\rm eff}$ in P reproducing most important eigenvalues.

Partition of Full Hilbert Space

P = subspace you want Q = the rest

Task: Find unitary transformation to make H block-diagonal in P and Q, with $H_{\rm eff}$ in P reproducing most important eigenvalues.

Must must apply same unitary transformation to transition operator.

In-Medium Similarity Renormalization Group

One way to determine the transformation

Flow equation for effective Hamiltonian. Gradually decouples selected set of states.

from H. Hergert

Trick is to keep all 1- and 2-body terms in *H* at each step *after normal ordering* (approximate treatment of 3-, 4-body ... terms).

If selected set contains just a single state, approach yields ground-state energy. If it contains a typical valence space, result is effective shell-model interaction and operators.

New Idea: Reference State with Collective Correlations

Background: Generator Coordinate Method

Construct set of mean fields by constraining coordinate(s), e.g. quadrupole moment $\langle Q_0 \rangle$. Then diagonalize *H* in space of symmetry-restored quasiparticle vacua with different $\langle Q_0 \rangle$.

Potential energy surface

Li et al.: Potential energy surface for ¹³⁰Xe

Collective wave functions

Rodríguez and Martínez-Pinedo: Wave functions in ⁷⁶Ge,Se peaked at two different deformed shapes.

In-Medium GCM for Decay of ⁴⁸Ca

GCM Reference States for IMSRG

Potential Energy Surfaces

⁴⁸Ca is spherical and ⁴⁸Ti is weakly deformed.

Spectrum in ⁴⁸Ti

In 9 shells

Smaller $\hbar\omega$ gives a bit more collectivity.

Variation with BE2 and Summary of Results

The green band is our best guess for the matrix element.

 β Decay (simplified) with electron lines omitted

Leading order:

$$p$$

 ν
 n
 g_A
Usual β -decay current

β Decay (simplified) with electron lines omitted

Leading order:

β Decay (simplified) with electron lines omitted

Leading order:

β Decay (simplified) with electron lines omitted

Leading order:

Consider very simple wave function

 β Decay (simplified) with electron lines omitted

Leading order:

Consider very simple wave function

Higher order:

 β Decay (simplified) with electron lines omitted

Leading order:

Usual β -decay current

Consider very simple wave function

 β Decay (simplified) with electron lines omitted

Leading order:

Consider very simple wave function

Higher order:

 β Decay (simplified) with electron lines omitted

Leading order:

Usual β -decay current

Consider very simple wave function

Higher order:

Quenching in the sd and pf Shells

IMSRG calculation, Holt et al

Some quenching from correlations omitted by the shell model.

But a lot comes from the two-body current.

What about in $\beta\beta$ Decay

Usual leading-order process

What about in $\beta\beta$ Decay

Usual leading-order process

What about in $\beta\beta$ Decay

Usual leading-order process

Example of diagram included by Klos, Menéndez, Schwenk, Gazit:

	• •
protons	neutrons
protons	neutrons

Example of diagram included by Klos, Menéndez, Schwenk, Gazit:

Example of diagram included by Klos, Menéndez, Schwenk, Gazit:

Example of diagram included by Klos, Menéndez, Schwenk, Gazit:

Example of diagram included by Klos, Menéndez, Schwenk, Gazit:

Effective two-body operator

Example of diagram included by Klos, Menéndez, Schwenk, Gazit:

Effective two-body operator

Example of corrections:

Example of diagram included by Klos, Menéndez, Schwenk, Gazit:

Effective two-body operator

Example of corrections:

Example of diagram included by Klos, Menéndez, Schwenk, Gazit:

Effective two-body operator

Example of corrections:

Example of diagram included by Klos, Menéndez, Schwenk, Gazit:

Effective two-body operator

Example of corrections:

Example of diagram included by Klos, Menéndez, Schwenk, Gazit:

Effective two-body operator

Example of corrections:

Example of diagram included by Klos, Menéndez, Schwenk,Gazit:

 p
 p

 p
 p

 p
 p

 f

 The bottom contributions

 1. don't affect single-β decay

 2. make quenching of Ovββ decay less important.

Example of corrections:

Neutron can be excited to *any* empty level.

Neutron can be excited to *any* empty level.

Can "tame" the divergence with form factors, but effective field theory says that there is a short-range contribution *beyond* what is usually considered in nuclear models. Appears as contact counter-term with coefficient that is unknown.

More on Counter-Terms

Usual light neutrino exchange:

must be supplemented, even at leading order in chiral EFT, by short-range operator (representing high-energy v exchange):

Coefficient of this leading-order term is also unknown. Results in uncertainty of order 100%

Collaboration members are to estimating it.

 Chiral EFT + new many-body methods are the tools required to compute matrix elements with controlled uncertainty. We currently have results for ⁴⁸Ca, working on ⁷⁶Ge.

- Chiral EFT + new many-body methods are the tools required to compute matrix elements with controlled uncertainty. We currently have results for ⁴⁸Ca, working on ⁷⁶Ge.
- Quenching of single β decay mostly understood in this framework as due to combination of previously un-captured correlations and two-body current.

- Chiral EFT + new many-body methods are the tools required to compute matrix elements with controlled uncertainty. We currently have results for ⁴⁸Ca, working on ⁷⁶Ge.
- 2. Quenching of single β decay mostly understood in this framework as due to combination of previously un-captured correlations and two-body current.
- Application of chiral EFT to Ovββ decay implies short-range contribution to neutrino exchange with unknown coefficient. We're investigating...

- Chiral EFT + new many-body methods are the tools required to compute matrix elements with controlled uncertainty. We currently have results for ⁴⁸Ca, working on ⁷⁶Ge.
- 2. Quenching of single β decay mostly understood in this framework as due to combination of previously un-captured correlations and two-body current.
- Application of chiral EFT to Ovββ decay implies short-range contribution to neutrino exchange with unknown coefficient. We're investigating...
- A similar issue hampers our ability to fully examine effects of the two-body current in Ovββ decay, though the part for which we do know coefficients doesn't quench very much.

- Chiral EFT + new many-body methods are the tools required to compute matrix elements with controlled uncertainty. We currently have results for ⁴⁸Ca, working on ⁷⁶Ge.
- 2. Quenching of single β decay mostly understood in this framework as due to combination of previously un-captured correlations and two-body current.
- Application of chiral EFT to Ovββ decay implies short-range contribution to neutrino exchange with unknown coefficient. We're investigating...
- A similar issue hampers our ability to fully examine effects of the two-body current in Ovββ decay, though the part for which we do know coefficients doesn't quench very much.

- Chiral EFT + new many-body methods are the tools required to compute matrix elements with controlled uncertainty. We currently have results for ⁴⁸Ca, working on ⁷⁶Ge.
- 2. Quenching of single β decay mostly understood in this

 A similar issue hampers our ability to fully examine effects of the two-body current in Ovββ decay, though the part for which we do know coefficients doesn't quench very much.