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Ab Initio Nuclear Structure
Often starts with chiral effective-field theory

Nucleons, pions sufficient below chiral-symmetry breaking scale.
Expansion of operators in powers of Q/Λχ .

Q = mπ or typical nucleon momentum.
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Figure 1: Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines pions. Small dots, large solid
dots, solid squares, and solid diamonds denote vertices of index � = 0, 1, 2, and 4, respectively. Further explanations are
given in the text.

The reason why we talk of a hierarchy of nuclear forces is that two- and many-nucleon forces are created
on an equal footing and emerge in increasing number as we go to higher and higher orders. At NNLO, the
first set of nonvanishing three-nucleon forces (3NF) occur [70, 71], cf. column ‘3N Force’ of Fig. 1. In fact, at
the previous order, NLO, irreducible 3N graphs appear already, however, it has been shown by Weinberg [52]
and others [70, 127, 128] that these diagrams all cancel. Since nonvanishing 3NF contributions happen first
at order (Q/⇤�)3, they are very weak as compared to 2NF which start at (Q/⇤�)0.

More 2PE is produced at ⌫ = 4, next-to-next-to-next-to-leading order (N3LO), of which we show only
a few symbolic diagrams in Fig. 1. Two-loop 2PE graphs show up for the first time and so does three-pion
exchange (3PE) which necessarily involves two loops. 3PE was found to be negligible at this order [57, 58].
Most importantly, 15 new contact terms ⇠ Q4 arise and are represented by the four-nucleon-leg graph with
a solid diamond. They include a quadratic spin-orbit term and contribute up to D-waves. Mainly due to
the increased number of contact terms, a quantitative description of the two-nucleon interaction up to about
300 MeV lab. energy is possible, at N3LO (for details, see below). Besides further 3NF, four-nucleon forces
(4NF) start at this order. Since the leading 4NF come into existence one order higher than the leading 3NF,
4NF are weaker than 3NF. Thus, ChPT provides a straightforward explanation for the empirically known
fact that 2NF � 3NF � 4NF . . . .

4. Two-nucleon interactions

The last section was just an overview. In this section, we will fill in all the details involved in the ChPT
development of the NN interaction; and 3NF and 4NF will be discussed in Section 5. We start by talking
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At each “order,” only a finite
number of operators exist.



Ab Initio Many-Body Methods

Partition of Full Hilbert Space

P̂HP̂ P̂HQ̂

Q̂HP̂ Q̂HQ̂

P Q

P

Q

Simpler calculation done here.

P = subspace you want
Q = the rest
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make H block-diagonal in P and Q,
with Heff in P reproducing most
important eigenvalues.

Must must apply same unitary
transformation to transition
operator.

As difficult as solving original problem.

But many-body effective operators (beyond
2- or 3-body) can be treated approximately.
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In-Medium Similarity Renormalization Group
One way to determine the transformation

Flow equation for effective Hamiltonian.
Gradually decouples selected set of states.
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Figure 7: Decoupling for the White generator, Eq. (41), in the Jπ = 0+ neutron-
neutron interaction matrix elements of 40Ca (emax = 8, ~ω = 20 MeV, Entem-Machleidt
N3LO(500) evolved to λ = 2.0 fm−1). Only hhhh, hhpp, pphh, and pppp blocks of the
matrix are shown.

mechanism. A likely explanation is that the truncation of the commutator (49) to one-
and two-body contributions only (Eqs. (50), (51)) causes an imbalance in the infinite-
order re-summation of the many-body perturbation series. For the time being, we have to
advise against the use of the Wegner generator in IM-SRG calculations with (comparably)
“hard” interactions that exhibit poor order-by-order convergence of the perturbation
series.

5.4. Decoupling

As discussed in Sec. 4.1, the IM-SRG is built around the concept of decoupling the
reference state from excitations, and thereby mapping it onto the fully interacting ground
state of the many-body system within truncation errors. Let us now demonstrate that
the decoupling occurs as intended in a sample calculation for 40Ca with our standard
chiral N3LO interaction at λ = 2.0 fm−1. Figure 7 shows the rapid suppression of the
off-diagonal matrix elements in the Jπ = 0+ neutron-neutron matrix elements as we
integrate the IM-SRG(2) flow equations. At s = 2.0, after only 20–30 integration steps
with the White generator, the Γpp′hh′(s) have been weakened significantly, and when we
reach the stopping criterion for the flow at s = 18.3, these matrix elements have vanished
to the desired accuracy. While the details depend on the specific choice of generator, the
decoupling seen in Fig. 7 is representative for other cases.

With the suppression of the off-diagonal matrix elements, the many-body Hamiltonian
is driven to the simplified form first indicated in Fig. 2. The IM-SRG evolution not only
decouples the ground state from excitations, but reduces the coupling between excitations
as well. This coupling is an indicator of strong correlations in the many-body system,
which usually require high- or even infinite-order treatments in approaches based on the
Goldstone expansion. As we have discussed in Sec. 3, the IM-SRG can be understood as
a non-perturbative, infinite-order re-summation of the many-body perturbation series,
which builds the effects of correlations into the flowing Hamiltonian. To illustrate this,
we show results from using the final IM-SRG Hamiltonian H(∞) in Hartree-Fock and
post-HF methods in Fig. 8.

After the same 20–30 integration steps that lead to a strong suppression of the off-
diagonal matrix elements (cf. Fig. 14), the energies of all methods collapse to the same
result, which is the IM-SRG(2) ground-state energy. By construction, this is the result
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from H. Hergert

Trick is to keep all 1- and 2-body terms in H at each step after
normal ordering (approximate treatment of 3-, 4-body . . . terms).

If selected set contains just a single state, approach yields
ground-state energy. If it contains a typical valence space, result is
effective shell-model interaction and operators.



New Idea: Reference State with Collective Correlations
Background: Generator Coordinate Method

Construct set of mean fields by constraining coordinate(s), e.g.
quadrupole moment 〈Q0〉. Then diagonalize H in space of
symmetry-restored quasiparticle vacua with different 〈Q0〉.

Potential energy surface

MICROSCOPIC DESCRIPTION OF SPHERICAL TO . . . PHYSICAL REVIEW C 81, 034316 (2010)

FIG. 2. (Color online) Same as
Fig. 1, but for the isotopes 134-128Xe.

barriers are concentrated around β ≈ 0, and therefore, rather
than two separate minima, the potentials display continuous
γ -soft minima that extend from prolate to oblate shapes.

Of particular interest in the present analysis are the nuclei
that have been identified as possible candidates for a shape
phase transition that can be characterized by the E(5) dynami-
cal symmetry [7]. The experimental realization of this critical-
point symmetry, associated with a second-order quantum
phase transition between spherical and γ -soft potential shapes,
was first identified in 134Ba [8]. E(5) is the symmetry of a
five-dimensional (intrinsic variables β and γ and the three
Euler angles) infinite well in the axial deformation variable β

[V (β) = 0 for |β| � βW , and V (β) = ∞ for |β| > βW ], and
the potential is completely γ independent. The microscopic
binding energy curve E(β) of 134Ba (Fig. 1) displays a shape
that is almost symmetric with respect to β = 0. One notes
a relatively flat bottom between β ≈ −0.1 and β ≈ 0.1 (the
oblate configuration is only ≈0.5 MeV above the prolate
minimum), and the potential is rather stiff for |β| > 0.15.
The dependence on the triaxial deformation parameter γ is
shown in the corresponding three-dimensional energy map
and, even more clearly, in Fig. 3, where we plot the binding
energy curves as functions of γ for several values of axial
deformation: β = 0.05, 0.1, 0.15, and 0.2. In the region of
the flat bottom |β| � 0.1 the binding energy of 134Ba is
indeed almost independent of γ , and even for somewhat larger
deformations, 0.1 � |β| � 0.2, only a weak dependence on γ

is predicted by the calculation based on the PC-F1 functional.
A very similar energy surface is calculated for the isotone
132Xe (Figs. 2 and 4).

In the next step the constrained self-consistent solutions
of the relativistic mean-field plus BCS equations, that is, the
single-particle wave functions, occupation probabilities, and
quasiparticle energies that correspond to each point on the

binding energy surfaces in Figs. 1 and 2, are used to calculate
the parameters that determine the collective Hamiltonian [21],

Ĥ = T̂vib + T̂rot + Vcoll, (3)

with the vibrational kinetic energy,

T̂vib = − h̄2

2
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FIG. 3. (Color online) Self-consistent RMF + BCS binding en-
ergy curves of the 134Ba nucleus, as functions of the deformation
parameter γ , for four values of axial deformation, β = 0.05, 0.1,
0.15, and 0.2.
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Li et al.: Potential energy surface for 130Xe

Collective wave functions
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Figure 1: (a)-(c) Collective wave functions, GT intensity with, (d)-(f) full and, (g)-(i) constant spatial
dependence and (j)-(l) pairing energies for (left) A = 48, (middle) A = 76 and (right) A = 150 decays.
Shaded areas corresponds to regions explored by the collective wave functions.

different deformations (β ≈ +0.40 and β ≈ +0.25, respectively). According to Eq. 6, the final results
depend on the convolution of the collective wave functions with the 0νββ matrix elements as a function
of deformation. In Fig. 1(d)-(f) we show schematically -shaded circles- the areas of the GT intensity
explored by the collective wave functions. We observe, on the one hand, that configuration mixing is
very important in the final result because several shapes can contribute to the value of NME, especially
in A = 48 and 76. On the other hand, we see that the regions with largest values of the GT intensity
are excluded by the collective wave functions. For example, calculations assuming spherical symmetry
give systematically larger NME -except for A = 96- as we show in Figure 2.

To summarize, we have presented a method for calculating 0νββ nuclear matrix elements based on
Gogny D1S Energy Density Functional including beyond mean field effects such as symmetry restoration
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β2

Rodrı́guez and Martı́nez-Pinedo: Wave
functions in 76Ge,Se peaked at two
different deformed shapes.



In-Medium GCM for Decay of 48Ca
GCM Reference States for IMSRG

Potential Energy Surfaces

48Ca is spherical and 48Ti is weakly deformed.



Spectrum in 48Ti
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Variation with BE2 and Summary of Results
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Axial Weak Current in Chiral EFT
β Decay (simplified) with electron lines omitted
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Axial Weak Current in Chiral EFT
β Decay (simplified) with electron lines omitted
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Axial Weak Current in Chiral EFT
β Decay (simplified) with electron lines omitted
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Axial Weak Current in Chiral EFT
β Decay (simplified) with electron lines omitted
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Quenching in the sd and pf Shells
Resolving the quenching puzzle of ! decays: medium-mass nuclei

IMSRG calculation, Holt et al

Some quenching from correlations omitted by the shell model.

But a lot comes from the two-body current.
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Leading Corrections
Example of diagram included by
Klos, Menéndez, Schwenk,Gazit:
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Leading Corrections
Example of diagram included by
Klos, Menéndez, Schwenk,Gazit:
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Leading Corrections
Example of diagram included by
Klos, Menéndez, Schwenk,Gazit:
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Leading Corrections
Example of diagram included by
Klos, Menéndez, Schwenk,Gazit:
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Example of diagram included by
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Example of diagram included by
Klos, Menéndez, Schwenk,Gazit:
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The bottom contributions
1. don’t affect single-β decay
2. make quenching of 0νββ decay less important.
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Example of diagram included by
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The bottom contributions
1. don’t affect single-β decay
2. make quenching of 0νββ decay less important.
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Example of diagram included by
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The bottom contributions
1. don’t affect single-β decay
2. make quenching of 0νββ decay less important.
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The bottom contributions
1. don’t affect single-β decay
2. make quenching of 0νββ decay less important.



Leading Corrections
Example of diagram included by
Klos, Menéndez, Schwenk,Gazit:

n

p

n

p

ν

n

n

n

p

n

p

π
ν

e

e

n/p

n/p

n

p

n

p

π
ν

ee

n n

p p
ν

π

e

e

n

p

ν

e

n

p

n n

p

ν

e

e
jp

n n

p p

νπ

e

e

n/p

n/p

n

p

n

p

π
ν

n n

p p
ν

π
n

p

ν

n

p

n n

p

ν

n n

p p

νπ

Effective two-body operator

One-body current acts first.

protons neutrons

Example of corrections:

n

p

n

p

ν

n

n

n

p

n

p

π
ν

e

e

n/p

n/p

n

p

n

p

π
ν

ee

n n

p p
ν

π

e

e

n

p

ν

e

n

p

n n

p

ν

e

e
jp

n n

p p

νπ

e

e

n/p

n/p

n

p

n

p

π
ν

n n

p p
ν

π
n

p

ν

n

p

n n

p

ν

n n

p p

νπ

protons neutrons

The bottom contributions
1. don’t affect single-β decay
2. make quenching of 0νββ decay less important.
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The bottom contributions
1. don’t affect single-β decay
2. make quenching of 0νββ decay less important.
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Neutron can be excited to any empty
level.

Can “tame” the divergence with form factors,
but effective field theory says that there is a
short-range contribution beyond what is
usually considered in nuclear models. Appears
as contact counter-term with coefficient that is
unknown.
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Neutron can be excited to any empty
level.

Can “tame” the divergence with form factors,
but effective field theory says that there is a
short-range contribution beyond what is
usually considered in nuclear models. Appears
as contact counter-term with coefficient that is
unknown.
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Neutron can be excited to any empty
level.

Can “tame” the divergence with form factors,
but effective field theory says that there is a
short-range contribution beyond what is
usually considered in nuclear models. Appears
as contact counter-term with coefficient that is
unknown.
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Neutron can be excited to any empty
level.

Can “tame” the divergence with form factors,
but effective field theory says that there is a
short-range contribution beyond what is
usually considered in nuclear models. Appears
as contact counter-term with coefficient that is
unknown.
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Neutron can be excited to any empty
level.

Can “tame” the divergence with form factors,
but effective field theory says that there is a
short-range contribution beyond what is
usually considered in nuclear models. Appears
as contact counter-term with coefficient that is
unknown.
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Neutron can be excited to any empty
level.

Can “tame” the divergence with form factors,
but effective field theory says that there is a
short-range contribution beyond what is
usually considered in nuclear models. Appears
as contact counter-term with coefficient that is
unknown.
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Neutron can be excited to any empty
level.

Can “tame” the divergence with form factors,
but effective field theory says that there is a
short-range contribution beyond what is
usually considered in nuclear models. Appears
as contact counter-term with coefficient that is
unknown.
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More on Counter-Terms

Usual light neutrino exchange:

must be supplemented, even at leading order in
chiral EFT, by short-range operator (representing
high-energy ν exchange):

Coefficient of this leading-order term is also
unknown. Results in uncertainty of order 100%
Collaboration members are to estimating it.
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So, to Sum Up. . .

1. Chiral EFT + new many-body methods are the tools required
to compute matrix elements with controlled uncertainty. We
currently have results for 48Ca, working on 76Ge.

2. Quenching of single β decay mostly understood in this
framework as due to combination of previously un-captured
correlations and two-body current.

3. Application of chiral EFT to 0νββ decay implies short-range
contribution to neutrino exchange with unknown coefficient.
We’re investigating. . .

4. A similar issue hampers our ability to fully examine effects of
the two-body current in 0νββ decay, though the part for
which we do know coefficients doesn’t quench very much.

That’s all; thanks.
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