

DARK MATTER DIRECT DETECTION WITH NOBLE LIQUIDS

ELENA APRILE COLUMBIA UNIVERSITY

CONFERENCE ON NEUTRINO AND NUCLEAR PHYSICS (CNNP2020) SOUTH AFRICA, FEBRUARY 25, 2020

Dark Matter Particle Candidates

neutrinos

Key Requirements

Detectors must be massive, with low energy threshold and effective discrimination of background produced by: Cosmic rays (1) (2) Intrinsic radioactivity (U,Th,K,Co)

(3) ultimately solar, atmospheric and SN neutrinos

Where do we stand?

- ~ 1 event/ kg-day
- Current limits \rightarrow
- ~ 1 event/ tonne-year

Noble Liquid targets: superior performance also for light(< 10 GeV) WIMPs Search

Phys. Rev. Lett. 121 081307 (2018)

https://arxiv.org/abs/1907.11485

What makes Noble Liquids ideal WIMP Targets?

	Z(A)	Boiling Point at 1 atm [K]	Density [g/cm ³]	Ionization[e ⁻ /keV]	scintillation [photon/keV]
Ar	18(40)	87.3	1.40	42	40
Xe	54(131)	165	3.06	64	46

Dense liquids: for massive and homogeneous targets at modest cost (~2k\$/kg of LXe)

Easy to purify and keep cold: mature cryogenic and purification technologies

Radiopure liquids: no intrinsic radioactivity (other than Kr85 /Ar39 which can be removed) to required levels). Long-lived isotopes ¹³⁶Xe (double beta decay) and ¹²⁴Xe (double electron capture) are an added asset for LXe detectors.

Two signals: excellent ionizers and scintillators

Light and Charge Signals in Noble Liquids

Two-phase Noble Liquid Time Projection Chamber: a 3D imaging detector with keV energy threshold

The XENON1T **Time Projection Chamber**

127 PMTs in the top array

121 PMTs in the bottom array

The power of combining two signals for precise Energy measurement

Example for XENON1T: excellent linearity and resolution from ~ keV (DM) to ~ MeV (0vbb)

world-record 0.8% relative energy resolution (σ/E) around 2.5 MeV (¹³⁶Xe 0v $\beta\beta$ energy)

[%] resolution Energy

 $E = (n_{ph} + n_e) \cdot W = \left(\frac{S_1}{g_1} + \frac{S_2}{g_2}\right) \cdot W$

XENONI00 at LNGS Active Target: 62kg

Noble Liquid TPCs (20-2000 kg active target)

Evolution of LXeTPCs as WIMP detectors

Fiducial mass [kg]

XENON1T

Low-energy ER background [events / (tonne keV day)]

Next Step: G2 LXe and LAr DM Experiments Which are the major technical challenges?

- Radon concentration in the bulk liquid xenon
 - Lowest achieved in XENON1T: 5 µBq/kg \bigcirc
 - G2 goal: $1 \sim 2 \mu Bq/kg$ (still the dominant ER background in XENONnT & LZ) Rn control, online distillation, charcoal adsorption
- Neutron background
 - Neutron veto (LZ: liquid scintillator, XENONnT: Gd-doped water) \bigcirc
- Long electron drift length (over a meter)
 - Require >1 ms electron lifetime: fast/efficient purification \bigcirc
 - Need faster drift velocity to avoid too much diffusion: 30~100 kV on cathode \bigcirc
- Large diameter TPC
 - Electron emission rate from gate/cathode electrodes needs to be controlled
 - Signal uniformity

From XENON1T to XENONnT

A more massive and lower background LXeTPC

XENON1T Infrastructure and sub-systems already operative

Aprile et al., Eur. Phys. J. C (2017) 77

Some upgrades aimed at reducing Rn220 already implemented and working

New TPC

8.4 ton (5.9 active) Time Projection Chamber

LXe Purification

To achieve fast cleaning of the large LXe volume (5000 SLPM)

1/10 reduction of background and x10 sensitivity improvement

Fast turnaround: ongoing commissioning. Start data taking Summer 2020

Radon Distillation

To remove the ²²²Rn emanated inside the detector

Neutron Veto

To tag and measure in situ neutron-induced background

Time Projection Chamber

- 1.3 m diameter, 1.6 m high
- 253 PMTs (3") in top array
- 241 PMTs (3") in bottom array
- 6 tons target mass of LXe
- being assembled now at LNGS
- start of LXe filling (8.4 tons)
 planned in April 2020

Time Projection Chamber

Cryogenic LXe Purification System

Design

- Reduce O₂ concentration to << 1 ppb
- Range of LXe flows possible, from 1 LPM to 5 LPM
- Continuous operation (backup LXe pump, backup O₂ filter)
- Fast electron lifetime measurement with purity monitor

Commissioning

- System commissioning almost completed
- Demonstrated reliable LXe operation over weeks
- High efficiency and low specific radon emanation rate
- Higher efficiency of O₂ filter with better controlled activation
- New LXe purification system will allow electron lifetime
- goal to be achieved early in detector commissioning phase

Cryogenic Radon Distillation Column

LUX-ZEPLIN (LZ) detector at SURF (~2020)

17 AM - 165 AMA 1

unnun

two-phase TPC with 50 ton (30 ton iducial) underground Ar with <1 μ Bq/	
kg)	DarkSid
Facilities (URANIA and ARIA) to produce UAr depleted in Ar39 by multi-path cryogenics distillation	Ontical &
mana paan oryogomoo aloanaalon	barrie
TPC acrylic vessel surrounded by atmospheric Ar (in ProtoDUNE like cryostat) + acrylic shell (Gd loaded) as neutron veto	nVeto
Separate cryogenic systems for DAr and AAr	TPC
Cryogenic SiPMs as photosensors: 8280 in TPC, ~3000 in Veto	Cryosta

DarkSide-20K at Gran Sasso (~2022)

ide-20K at Gran Sasso (~2022)

Two key requirements demonstrated with DS-50 and DEAP-3600: PSD an

from Jelena Maricic

8000 10000 12000 14000 16000 18000 20000

In March 2015, DS50 was filled with underground argon UAr. Major undertaking – extracted from Colorado mine and purified at FNAL

Exhibits 1400 times smaller content of ³⁹Ar in UAr than AAr!

Low level of ³⁹Ar in UAr allows extension of DS to ten and hundred ton-scale detector.

Complementarity of Targets

J. Newstead et al , PRD 88, 076011 (2013)

Summary

- In this decade LXe and LAr experiments will reach unprecedented sensitivities to nail down the WIMP as an explanation for DM.

Scalability and low-background demonstrated by noble liquid targets make them most promising to search for WIMPs in a large mass range.

Summary

- In this decade LXe and LAr experiments will reach unprecedented sensitivities to nail down the WIMP as an explanation for DM.

Scalability and low-background demonstrated by noble liquid targets make them most promising to search for WIMPs in a large mass range.