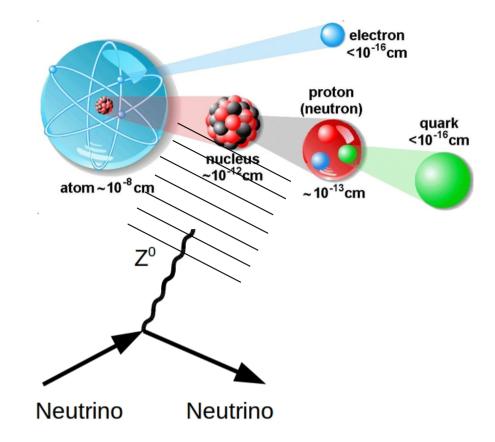
The CONUS experiment and future potential of coherent neutrino scattering

Manfred Lindner On behalf of the CONUS Collaboration

Conference on Neutrino & Nuclear Physics (CNNP2020)

Arabella Hotel and Spa near Cape Town (South Africa) 24-28 February 2020

Coherent v Scattering


Z-exchange of v with nucleus

$$Q_w = N - (1 - 4\sin^2\theta_w)Z \sim \mathbf{N}$$

→ mostly neutrons momentum ← → wavelength

Very low momentum

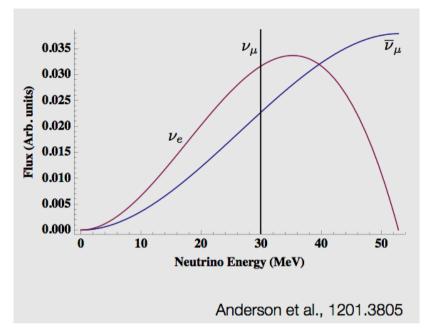
nucleus recoils as a whole

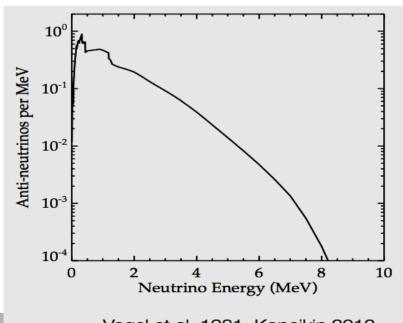
Important: Coherence length $\sim 1/E \rightarrow E_{\nu}$ below O(50) MeV

 \rightarrow low energy $E_v \leftarrow \rightarrow$ lower cross sections \rightarrow very high flux!

$$\frac{d\sigma(E_{\nu},T)}{dT} = \frac{G_f^2}{4\pi} Q_w^2 M \left(1 - \frac{MT}{2E_{\nu}^2} \right) F(Q^2) \sim N^2$$

 $N \simeq 40 \implies N^2 = 1600 \implies detector mass 10t \implies few kg$


Different experimental Paths


Low energy v's from accelerators:

- π -decay-at-rest (DAR) ν source
- different flavors produced
- relatively high recoil energies
- → close to de-coherence
- **→** 1st observation of CEVNS by COHERENT

Reactors:

- lower v energies than accelerators
- lower cross section higher flux
- different flavor content implications for probes of new physics
- **→** Synergies between energies + more

The CONUS Experiment

Combine:

M. Lindner, MPIK

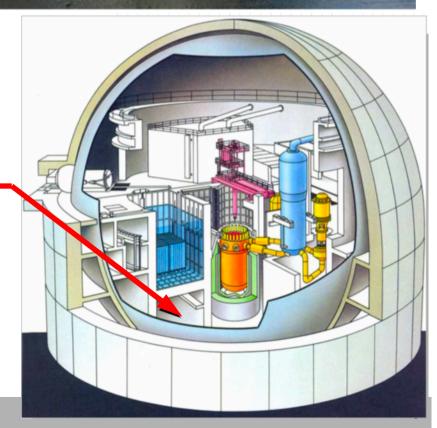
- 1) lowest detection threshold > R&D
- 2) best background suppression → "virtual depth"
- 3) highest neutrino flux → close to power reactor

COherent NeUtrino Scattering experiment

A. Bonhomme, H. Bonnet, C. Buck, T. Hugle, J. Hakenmüller, G. Heusser, M. Lindner, E. van Meeren, W. Maneschg, T. Rink, H. Strecker - Max Planck Institut für Kernphysik (MPIK), Heidelberg

K. Fülber, R. Wink - Preussen Elektra GmbH, Kernkraftwerk Brokdorf (KBR), Brokdorf

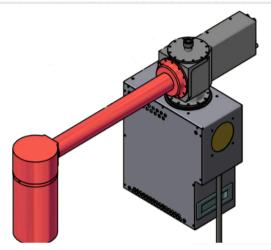
The CONUS Reactor Site

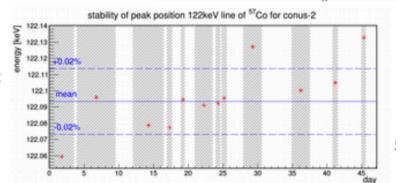

The Brokdorf (Germany) nuclear power plant:

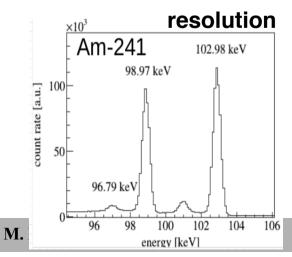
thermal power 3.9 GW_{th} detector @ d=17m → v flux: 2.4 x 10¹³/cm²/s

very high duty cycle

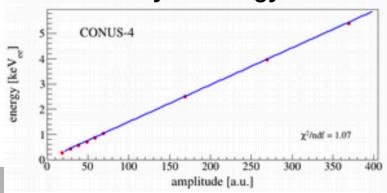
- ightharpoonup very intense integral neutrino flux E_{ν} up to $\sim 8~MeV \rightarrow$ fully coherent
- overburden 10-45 m.w.e
- access during reactor operation
- measurements of n background
- ON/OFF periods
 - **→** background only measurement

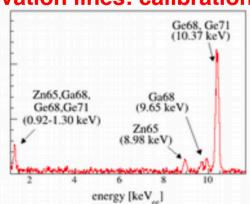


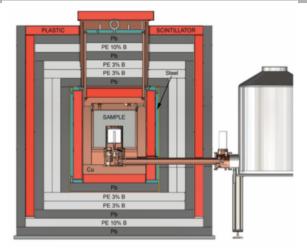

Detectors: CONUS 1-4


- p-type point contact HPGe
- 4x 1kg active mass 3.85kg
- spec. for pulser res. (FWHM) ≤ 85eV
 → noise threshold < 300eV
- electrical PT-cryocoolers
- ultra low background components
- close collaboration with Canberra

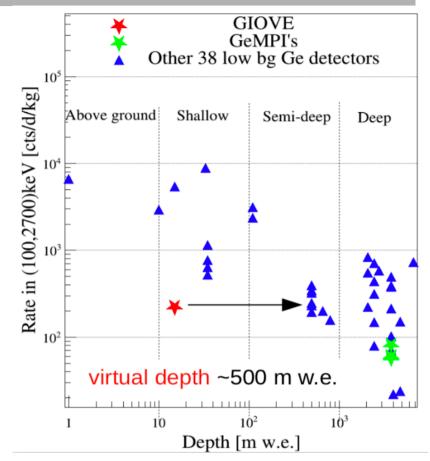
Detector	Pulser FWHM _P [eV _{ee}]
CONUS-1	69±1
CONUS-2	77±1
CONUS-3	64±1
CONUS-4	68±1


Long term stability Under lab. Conditions: stan. dev. of peak position: +-15eV (+-0.02%) (within 45 days)





Linearity of energy scale activation lines: calibration



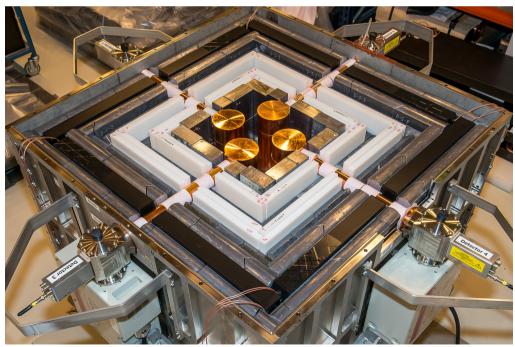
"Virtual Depth": The GIOVE Shield

- R&D at MPIK
- main purpose: material screening@ shallow depth (15 mwe)
- coaxial HPGe detector (m_{act} = 1.8 kg)
- radio-pure passive shielding
 - Pb, B-doped PE, μ-veto, OFHC Cu
- active veto: optimized to reduce μ 's and μ -induced signals
 - plastic scintillators with PMTs
 - 99% muon veto efficiency (dead time ~2%)

``virtual depth" UG projects close to surface

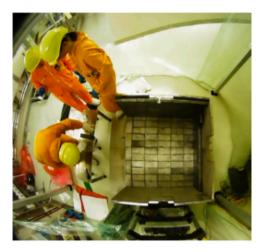
G.Heusser et al., Eur. Phys. J. C(2015)75:531

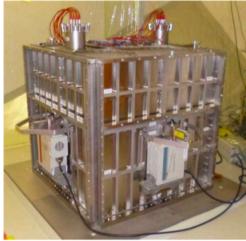
 $(^{226}\text{Ra}: 70\mu\text{Bq/kg}, ^{228}\text{Ra}: 110\mu\text{Bq/kg}, ^{228}\text{Th } 50\mu\text{Bq/kg})$

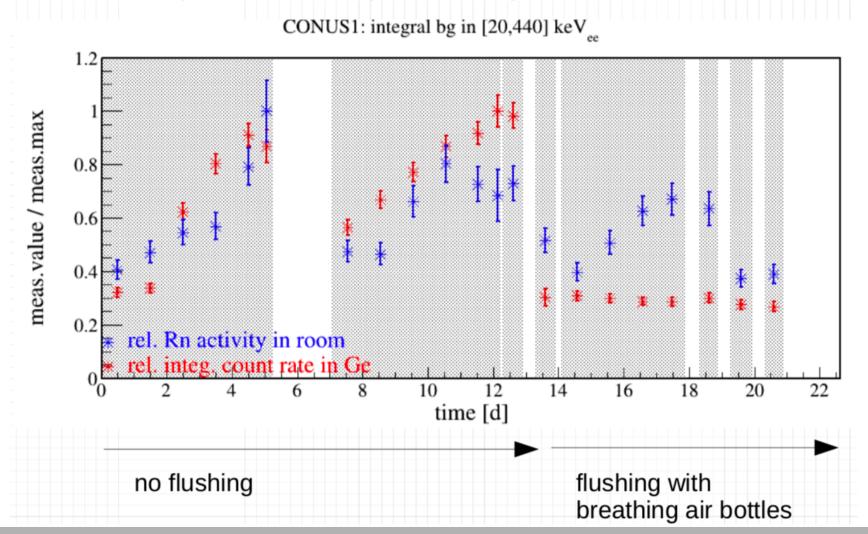

Test Assembly and Installation @ Reactor

assembly at MPIK UG lab

- → characterization
- → commissioning


installation @ Brokdorf

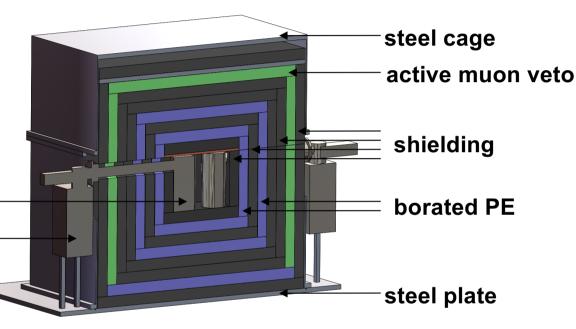

- → full assembly
- → commissioning



Radon Mitigation @ Reactor Site

radon at reactor site: closed room, thick concrete walls → 100-300 Bq/m³ half-life of ²²²Rn: 3.8d → counter measure @reactor site:

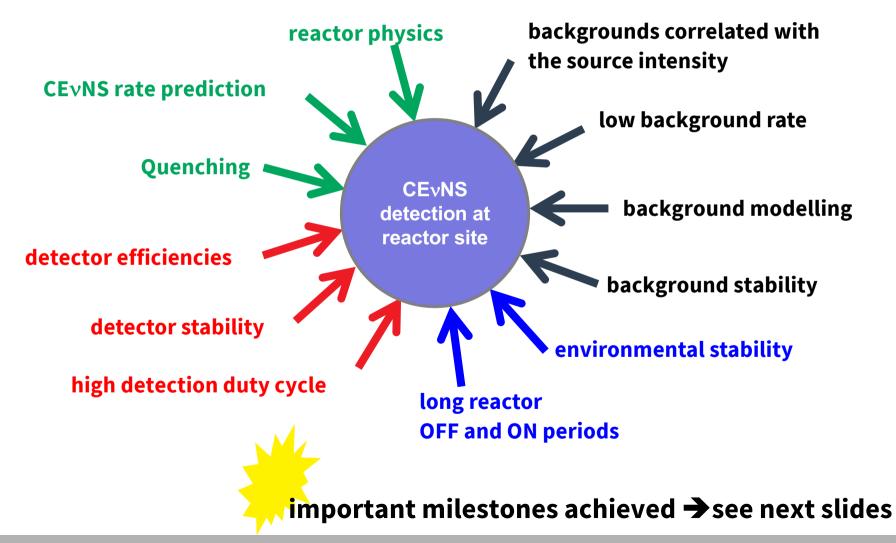
hermetical sealing + flush with aged breating air bottles ~1 l/min


The CONUS Detector

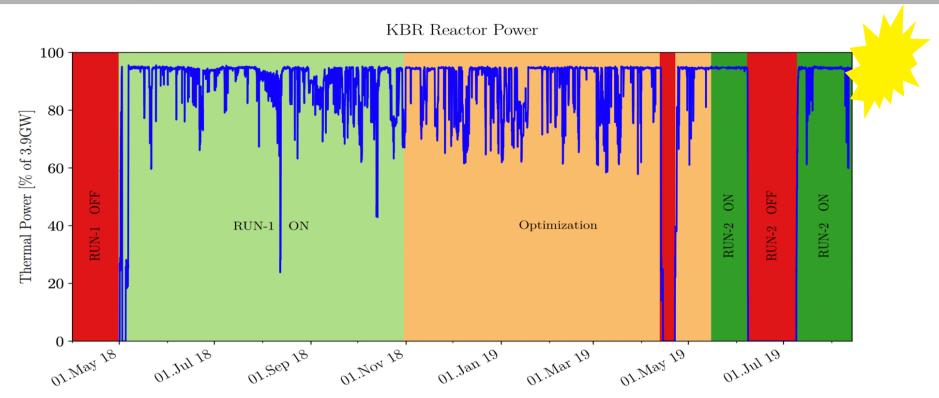
"virtual depth" setup:

- 4 Germanium detectors
- PT cryocooling
- shielding
- → all ultra low background
- electronics & DAQ

Ge detectors
PT cryocoolers

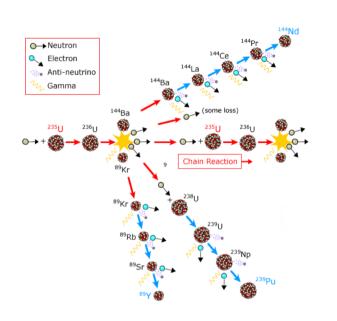

Successful combination of three essential improvements:

- excellent shielding (GIOVE @ MPIK = "virtual depth")
- new detectors with very low thresholds & PT cryocooling
- site with very high neutrino flux


Project start summer 2016 → data taking spring 2018

Towards CEVNS Detection

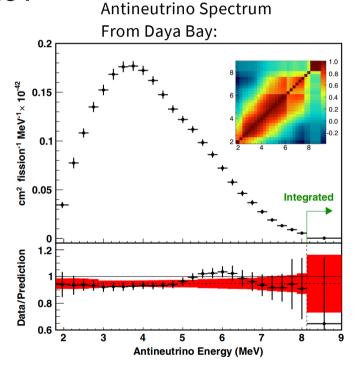
Simple: Compare ON versus OFF To fully exploit the results:



Exposure: Reactor ON/OFF periods

- Smooth detector operation: reactor ON-OFF (thermal power)
- ON periods: reactor is operated at 95% of maximum 3.9 GW thermal power
- OFF periods: challenging due to environmental stability and less exposure
- Run 1 ended 10/2018 and Run 2 started in 05/2019 → more OFF time!
- Power variations

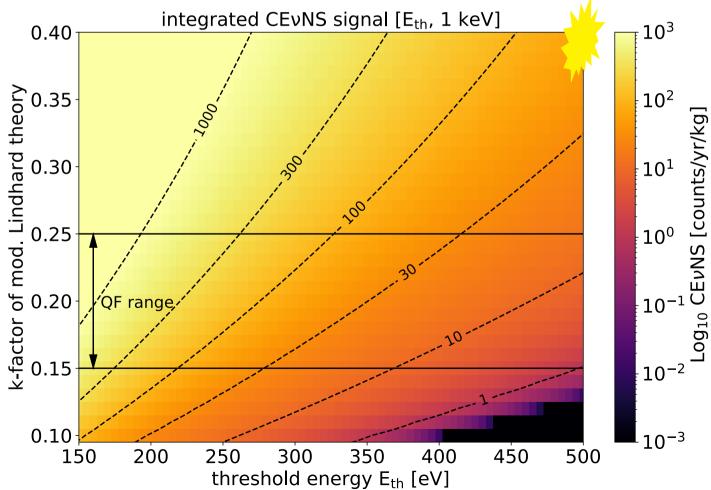
Reactor Physics Implementation


Antineutrino emission from β -decays in fuel reaction chain:

- more than 99% from ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu
- \sim 6-7 v's / fission
- energies up to ~10 MeV

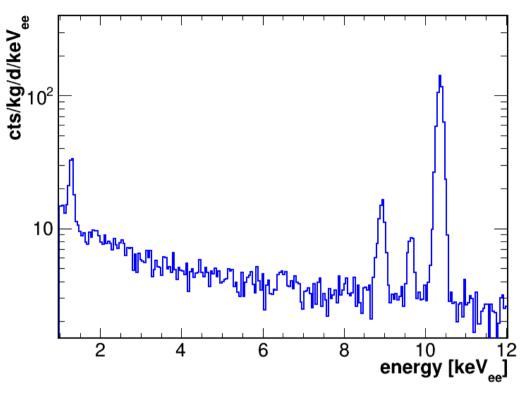
Antineutrino Flux:

$$\frac{dN^{\nu}(t)}{dt} \propto \frac{1}{L^2} \times \frac{P_{th}(t)}{\langle E_f \rangle}$$


- → flux calculation for room A408 at KBR @17m from reactor core: ~10¹³/(cm² s)
- expected event rates (w/o new physics)

Expected Signal

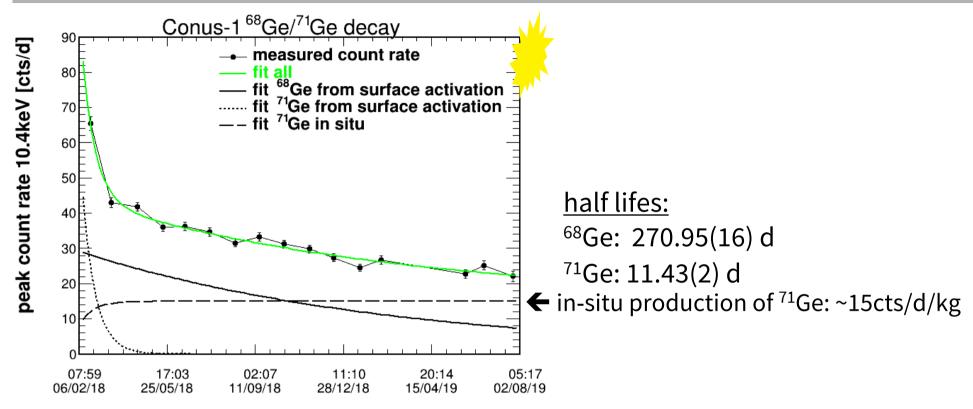
Updated prediction including all reactor information:


- Daya Bay covariance matrix,...
- thermal power total uncertainty: +/-2.5%
- Quenching factor is largest systematic error (as for all CEvNS experiments)

M. Lindner,

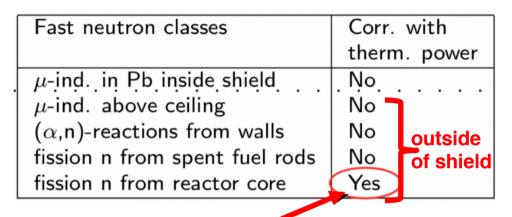
14

Background Level



Conus-2: 214 days of live time

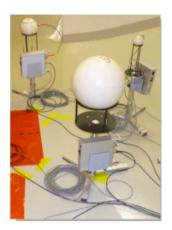
- "virtual depth" works: bg rates of 10 (1) cts/d/kg below 1 keV (above 2 keV)
- 1yr of operation: only 4 lines visible below 12keV: ⁷¹Ge, ⁶⁸Ge, ⁶⁵Zn, ⁶⁸Ga
- no hints for other lines: ⁵⁵Fe, ⁵⁶Fe, ⁴⁹V, ⁷³As, ⁷⁴As, ⁵¹Cr, ⁵⁶Ni, ⁵⁶Co, ⁵⁸Co (lower than what has been achieved by several other DM experiments)
- Very low bg shield at reactor site possible w/o contamination!

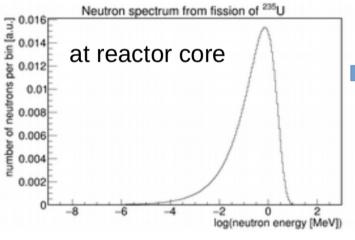

Background Stability

- radon under control, little variation has no impact on low energy regime
- decaying Ge isotope bg rate can be well corrected in spectral fit for all ON/OFF periods
- hadronic showers close to surface at few m.w.e. fully negligible (non-trivial and not true for all other experiments...)
- Muon flux variations have a negiligible impact

Neutron Spectroscoy @Reactor Site

Ge recoils from fast neutrons can mimic CEVNS

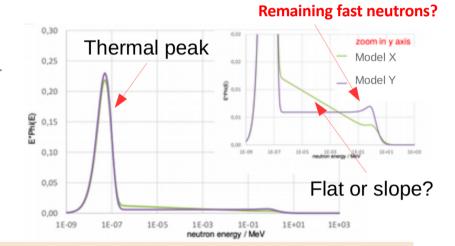



NEMUS

setup by PTB

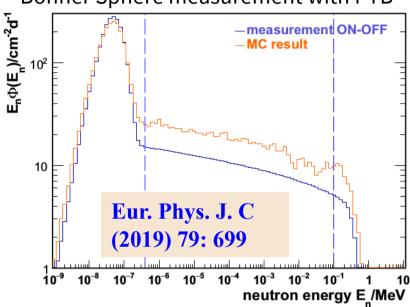
on-site

neutron spectroscopy



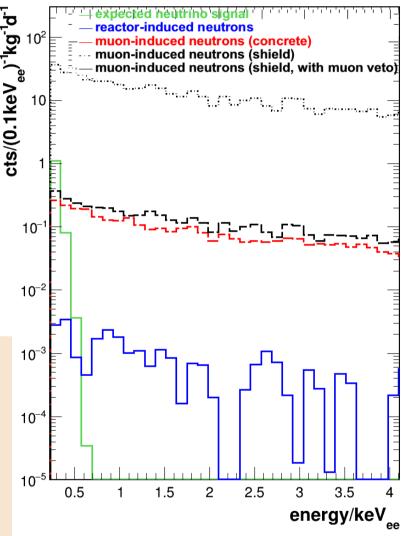
propagation

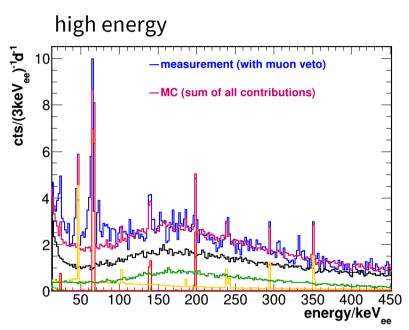
water Steel Concrete


...

- 1. Neutron field highly thermalized (>80%), correlated with thermal power
- → fully absorbed by B-PE layers (MC)
- 2. Residual fluence: if at all epithermal from reactor cosmic 100 MeV n: negligible
- → reactor-correlated fast n inside shield ~ negligible

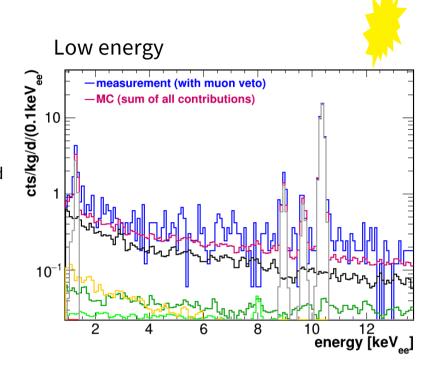
Thermal Power correlated Background


Bonner Sphere measurement with PTB



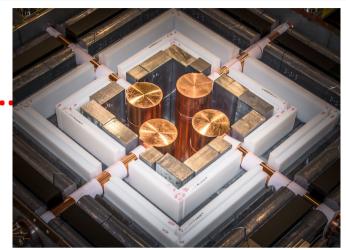
- neutron field inside A408 highly thermalized, but → should be done for all reactor experiments
- MC demonstrates that almost no reactor neutrons arrive at diodes inside shield; at least ten times less then the expected signal
- μ-induced neutrons dominant, but at constant rate ←→ non ON/OFF effect

inhomogeneous → mapping; lession:


Background Model

Prompt Muon-induced ²¹⁰Ph

Metastable Ge states


Cosmic activation
Muon-induced
neutrons in concrete
Residuals

- background MC includes detailed knowledge from material screening and neutron measurements
- the main left-over components are μ-induced and from Pb210 in the shield
- Consistency between:
 commissioning at MPIK at 15 m.w.e. ←→ operation at KBR at 24 m.w.e.
- fully consistent background understanding, no surprises

The Status of CONUS

- KBR Brokdorf: Very strong v-source; $W_{th} = 3.9GW @17m \rightarrow ~10^{13} v/(cm^2 s)$
 - detailed information on flux, spectrum, ...
- CONUS: Very low threshold HPGe detectors
 "virtual depth"; very low bg demonstrated

- Comprehensive campaign to understand remaining backgrounds
 - → very detailed study (neutrons): Eur. Phys. J. C (2019) 79: 699
 - **→** reactor correlated background inside shield neligible
 - **→** more studies...
- Detailed background modelling and stability studies
- NEUTRINO-2018: 114/112 kg*d of OFF/ON data \rightarrow 2.4 σ stat. excess
- More data (OFF data!); very detailed analysis on-going...

M. Lindner, MPIK CNNP 2020 20

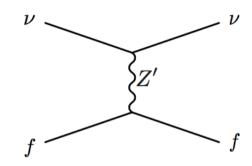
The Future: CONUS100

Upscaling of a working technology to 100kg → very interesting potential high statistics \rightarrow precision \rightarrow potential for various interesting topics...

assume:

100kg detector 4GW @ 15m flux $\sim 3*10^{13}$ /cm²/s background 1/kg/day

BSMsens=AS/S


Puler/Thresh [eV]	QF=0.15	BSMsens	QF=BF	BSMsens	QF=0.25	BSMsens
40 / 120	647 474/ 8291 / 78.1	1*10 ⁻³	965 999/ 10 775/89.7	1*10 ⁻³	2.9*10 ⁶ / 15 158 / 189	6*10 ⁻⁴
45 / 135	407 092/ 8 036 / 50.7	2*10 ⁻³	664 316/ 10 519/63.2	1*10 ⁻³	2.1*10 ⁶ / 14 866 / 144	7*10 ⁻⁴
50 / 150	254 745/ 7780 / 32.7	2*10 ⁻³	458 072/ 1 0264/44.6	1*10 ⁻³	1.6*10 ⁶ / 14 574 / 84.9	8*10 ⁻⁴
55 / 165	158 109/ 7 524 / 21.0	3*10 ⁻³	315 843/ 9 971/31.7	2*10 ⁻³	1.2*10 ⁶ / 14 318 / 84.9	9*10 ⁻⁴
60 / 180	97 066/ 7 305 / 13.3	3*10 ⁻³	217 277/ 9 716/22.4	2*10 ⁻³	919 435/ 13 026 / 65.6	1*10 ⁻³
65 / 195	58 827/ 7 049 / 8.3	4*10 ⁻³	148 848/ 9 460/15.7	3*10 ⁻³	696 196/ 13 770 / 50.6	1*10 ⁻³
70 / 210	35 154/ 6 830 / 5.1	5*10 ⁻³	101 386/ 9 204/11.0	3*10 ⁻³	527 204/ 13 514 / 39.0	1*10 ⁻³
75 / 225	20 711/ 6 575 / 3.2	7*10 ⁻³	68 573/ 8 949/7.7	4*10 ⁻³	398 867/ 13 222 / 30.2	2*10 ⁻³
80 / 240	12 042/ 6 355 / 1.9	9*10 ⁻³	46 008/ 8 730/5.27	5*10 ⁻³	301 231/ 12 966 / 23.2	2*10 ⁻³
85 / 255	6 924/ 6 136 / 1.1	1*10 ⁻²	30 598/ 8 474/3.6	6*10 ⁻³	226 910/ 12 711 / 17.9	2*10 ⁻³

Maneschg, Rink, Salathe, ML _{BSMsens=ΔS/S}

S[1/yr] / B[1/yr] / R=S/B

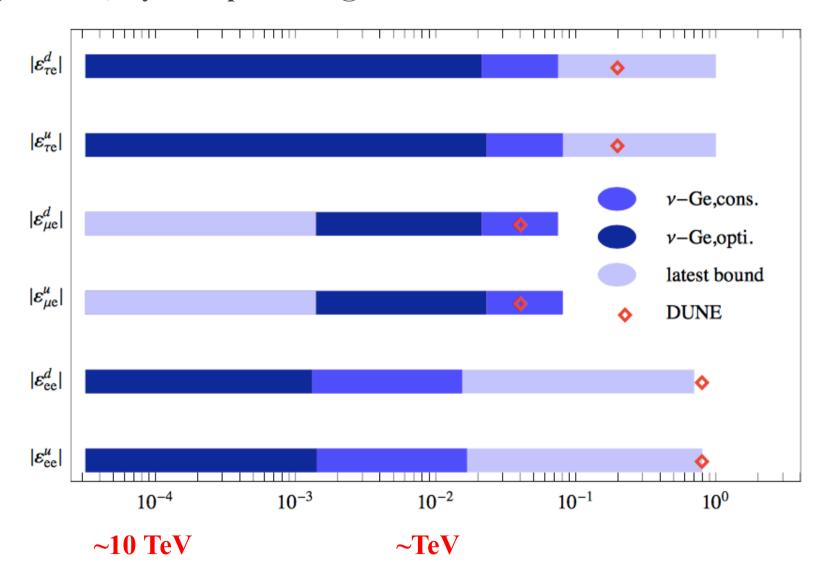
Searches for new Physics: NSI's

NSI's \longleftrightarrow new physics at high scales Which are integrated out Z', new scalars, ... $\Rightarrow \varepsilon_{ii}$

$$\mathcal{L}_{NSI} \simeq \epsilon_{lphaeta} 2\sqrt{2}G_F(ar{
u}_{Leta} \ \gamma^{
ho} \
u_{Llpha})(ar{f}_L\gamma_{
ho}f_L)$$

$$\frac{d\sigma}{dT}(E_{\nu},T) = \frac{G_F^2 M}{\pi} \left(1 - \frac{MT}{2E_{\nu}^2} \right) \times \left\{ \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 + \sum_{\alpha = \mu, \tau} \left[Z(2\varepsilon_{\alpha e}^{uV} + \varepsilon_{\alpha e}^{dV}) + N(\varepsilon_{\alpha e}^{uV} + 2\varepsilon_{\alpha e}^{dV}) \right]^2 \right\}$$

Barranco et al. 2005


$$|\epsilon| \simeq \frac{M_W^2}{M_{NSI}^2}$$

 \rightarrow Competitive method to test TeV scales $\epsilon = 0.01 \leftarrow \rightarrow$ TeV scales

NSI-Potential

100kg detector, 5 years operation @ 4GW

ML, W. Rodejohann, X.Xu

M. Lindner, MPIK CNNP 2020 23

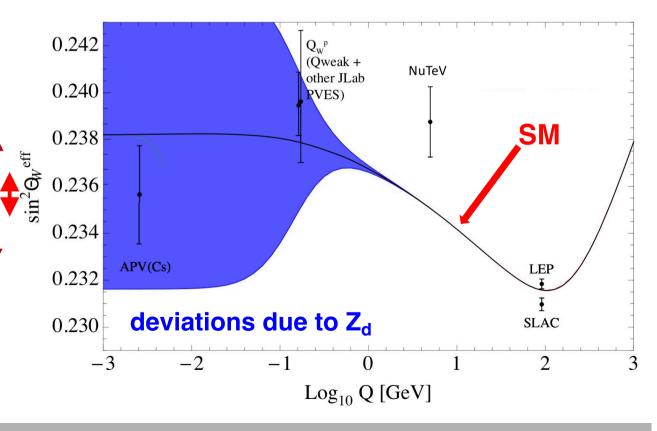
Precise Measurement of $\sin^2\theta_{\rm W}$ at low E

 $\sin^2\theta_W$ precisely known in SM SM quantum corrections \rightarrow running $\sin^2\theta_W^{eff}$

CEvNS cross-section: $\sigma \sim N - [(1 - 4*\sin^2\theta_w) Z]^2$

≥ 0

→ enhanced sensitivity


BSMsens:

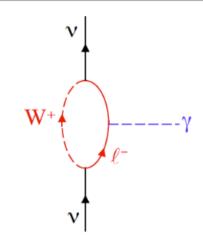
$$10^{-3} \rightarrow \Delta \sin^2 \theta_W = 0.006$$

 $10^{-4} \rightarrow \Delta \sin^2 \theta_W = 0.0006$

potential problem: (g-2) anomaly

→ Light dark sector?

Z_d; M=150 MeV; ...other parameters See e.g. 1411:4088 many models lead to similar effects...


M. Lindner, MPIK CNNP 2020 24

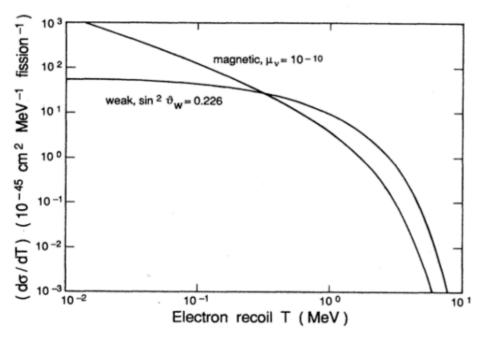
Searches for new Physics: Magnetic Moments

Magnetic moment for minimal v masses are very tiny:

Dirac:
$$\mu_{kk}^D \simeq 3.2 * 10^{-19} \left(\frac{m_k}{\text{eV}}\right) \mu_B$$

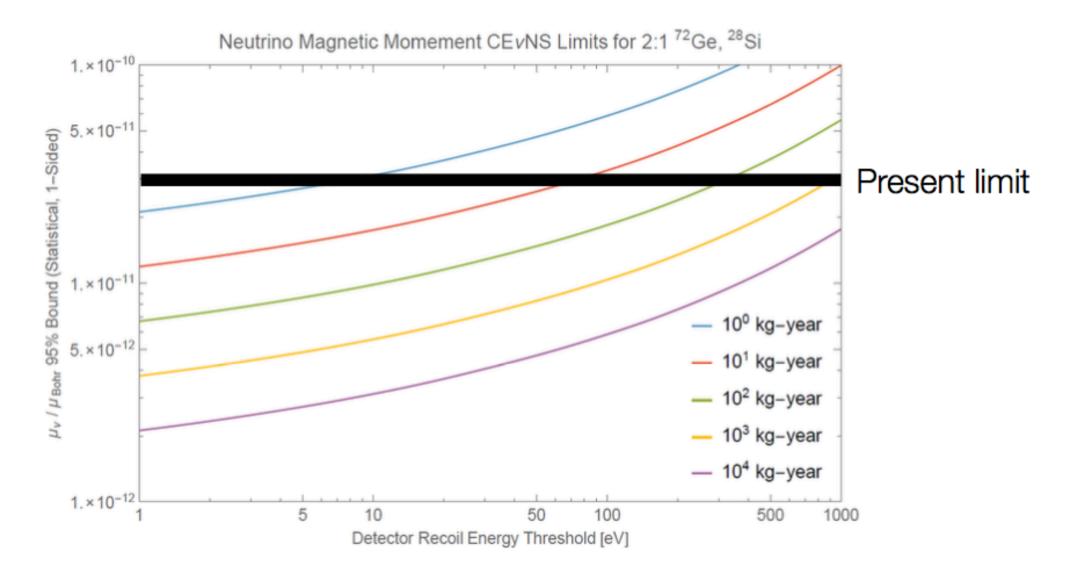
Majorana:
$$\mu_{ll'}^M \lesssim 4 * 10^{-9} \mu_B \left(\frac{M_{ll'}^M}{\mathrm{eV}}\right) \left(\frac{\mathrm{TeV}}{\Lambda}\right)^2 \left|\frac{m_{\tau}^2}{m_l^2 - m_{l'}^2}\right|$$

New physics → detectable enhancements due to new physics:


SUSY, extra dimensions, ...

At least new best limits:

e-scattering (GEMMA) and astrophysics:


$$\mu_{\nu} < 3 \times 10^{-11} \mu_b$$

Scattering on protons coherently enhanced: → detectable at low energy (Vogel & Engel 1989)

$$\left. \frac{d\sigma}{dT_{\rm R}} \right|_{\mu_{\nu}} = \left. \frac{\pi \alpha^2 \mu_{\nu}^2}{m_e^2} \left[\frac{1 - T_{\rm R}/E_{\nu}}{T_{\rm R}} + \frac{T_{\rm R}}{4E_{\nu}^2} \right] \right.$$

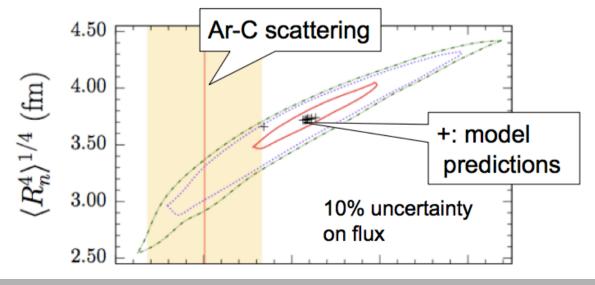
Potential for Magnetic Moments

100 kg * 5 y = 500 kg-year; low threshold \rightarrow one order of magnitude better

M. Lindner, MPIK CNNP 2020 26

Nuclear Structure with coherent Scattering

Remember: DAR sources close to de-coherence $\leftarrow \rightarrow$ combine with reactor measurements

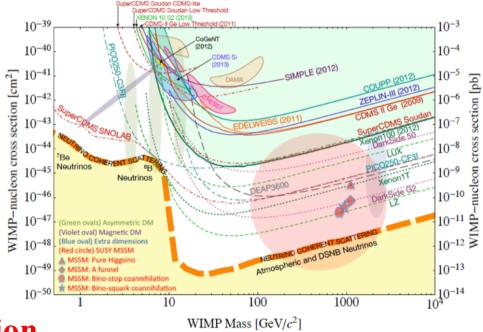

$$\frac{d\sigma}{dT} \approx \frac{G_F^2 M}{4\pi} \left(1 - \frac{MT}{2E^2} \right) \left[NF_N(q^2) - Q_W ZF_Z(q^2) \right]^2$$

Nuclear form factors F_{N,z}(q) are Fourier transforms of N & P densities

resolve nuclei (mostly neutrinos) in neutrino light

Fit recoil **spectral shape** to determine the F(Q²) moments (requires very good energy resolution, good systematics control)

Example: tonne-scale experiment at πDAR source



M. Lindner, MPIK CNNP 2020 27

CEVNS Connections to more Topics...

DM connection:

- 1) DM experiments <u>assume</u> coherent DM scattering \rightarrow test with v's
- 2) Neutrino floor of direct DM experiments will measure CEvNS
 - → combine different measurements

CEVNS cross-section

3) Important for astrophysical applications: supernovae, ...

4) ...

More Phenomenology / Theory of CEvNS

- Sterile neutrino searches...
- coherent v's → conceptually very interesting questions see e.g. Akhmedov, Arcadi, ML, Vogl, JHEP 1810 (2018) 045, arXiv:1806.10962
 - can coherent scattering occur at macroscopic scales?
 - role of the recoil of constituents in quantized picture
 - semi-classical factorization of QFT process into (cross-section) * $F(q^2)$?

- ...

- coherence length in QFT approach Egorov, Volobuev: 1902.03602
- connections to dark matter models (many...)
- producing new fermion in CEvNS Brdar, Rodejohann, Xu: 1810.03626
- effects of CP violating parameters on CEvNS processes see e.g. Sierra, De Romeri, Rojas: arXiv:1906.01156
- Safe-guarding + reactor neutrino spectra, +...

Summary

- CEVNS was 1st observed by COHERENT at $E_v \simeq 30-50$ MeV
- CONUS starts to see CEVNS with reactor neutrinos (few MeV)
 - 1st rate only results from one month of reactor on
 - shape... → more significant → to be published soon
 - detector & reactor are running more statistics soon
- CEnNS will become an interesting tool
 - upscaling of existing technology to O(100kg) various physics topics:
 - coherent v scattering ←→ DM & WIMP scattering, neutrino floor
 - search / limits for magnetic moments
 - search for new physics: NSIs, steriles, $\sin^2\theta_W$, sterile osc. searches
 - nuclear form factors with neutrinos $F(q^2)$
 - reactor v spectrum & anomalies
 - reactor monitoring: safe-guarding, optimization

→ very interesting potential of CEvNS