

Ab initio nuclear theory for beyond standardmodel physics

Jason D. Holt

Scientist, Theory Department Conference on Neutrino and Nuclear Physics February 26, 2020

work of S.R. Stroberg, T. Miyagi

Arthur B. McDonald Canadian Astroparticle Physics Research Institute

 $0v\beta\beta$ -decay

Neutrino own antiparticle $\iff 0\nu\beta\beta$ decay

Tremendous impact on BSM physics:

Lepton-number violating process

Majorana character of neutrino

Absolute neutrino mass scale

0vββ-decay

Neutrino own antiparticle $\iff 0\nu\beta\beta$ decay

Tremendous impact on BSM physics:

Lepton-number violating process

Majorana character of neutrino

Absolute neutrino mass scale

$$\left(T_{1/2}^{0\nu\beta\beta}\right)^{-1} = G^{0\nu} M^{0\nu}^{2} \langle m_{\beta\beta} \rangle^{2} \langle m_{\beta\beta} \rangle = \left| \sum_{i=1}^{3} U_{ei} m_{i} \right|$$

NME not observable: must be calculated

% TRIUMF

0vββ-decay

Uncertainty from Nuclear Matrix Element; bands do not represent rigorous uncertainties

RIUMF

Status of 0vββ-decay Matrix Elements

All calculations to date from extrapolated phenomenological models; large spread in results

All models missing essential physics

Impossible to assign rigorous uncertainties

RIUMF

Status of 0vββ-decay Matrix Elements

All calculations to date from extrapolated phenomenological models; large spread in results

All models missing essential physics

Impossible to assign rigorous uncertainties

Explore new approaches to nuclear theory

Dark Matter Direct Detection

Observation of nuclear recoil

Direct detection: $X \, \mathrm{SM} \to X \, \mathrm{SM}$

Leading candidates: neutralinos, ...?

Couple to scalar and axial-vector currents in atomic nuclei

DM

Dark Matter Direct Detection

Exclusion plots for WIMP-nucleon total cross section require nuclear structure

Differential cross section: compare results from different target nuclei

 $\frac{\mathrm{d}\sigma}{\mathrm{d}p^2} = \frac{8G_F^2}{(2J_i+1)v^2} S_A(p)$

Structure functions required from nuclear theory

% TRIUMF

Ab Initio Theory for Atomic Nuclei

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

$$H\psi_n = E_n\psi_n$$

Ab Initio Theory for Atomic Nuclei

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces (low-energy QCD)
- Electroweak physics

$$H\psi_n = E_n\psi_n$$

"The first, the basic approach, is to study the elementary particles, their properties and mutual interaction. Thus one hopes to obtain knowledge of the nuclear forces."

Ab Initio Theory for Atomic Nuclei

NLO $O\left(\frac{Q^2}{\Lambda^2}\right)$

N²LO $O\left(\frac{Q^3}{\Lambda^3}\right)$

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces (low-energy QCD)
- Electroweak physics

Chiral effective field theory: systematic expansion of nuclear interactions

Consistent 3N forces, electroweak currents

Ab Initio Theory for Atomic Nuclei

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces (low-energy QCD)
- Electroweak physics
- Nuclear many-body problem

$$H\psi_n = E_n\psi_n$$

"If the forces are known, one should, in principle, be able to calculate deductively the properties of individual nuclei."

Chronological Reach of Ab Initio Theory

Moore's law: exponential growth in computing power

Methods for light nuclei (QMC, NCSM) scale exponentially with mass

Chronological Reach of Ab Initio Theory

Moore's law: exponential growth in computing power

Methods for light nuclei (QMC, NCSM) scale exponentially with mass

50

Chronological Reach of Ab Initio Theory

Moore's law: exponential growth in computing power

Methods for light nuclei (QMC, NCSM) scale exponentially with mass

Polynomial scaling methods developed (CC, IMSRG,...) Explosion in limits of ab initio theory

Breadth of Ab Initio Theory

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces, electroweak physics
- Nuclear many-body problem

$$H\psi_n = E_n\psi_n$$

*****TRIUMF

Valence-Space IMSRG

Explicitly construct unitary transformation from sequence of rotations

$$U = e^{\Omega} = e^{\eta_n} \dots e^{\eta_1} \quad \eta = \frac{1}{2} \arctan\left(\frac{2H_{\text{od}}}{\Delta}\right) - \text{h.c}$$
$$\tilde{H} = e^{\Omega} H e^{-\Omega} = H + [\Omega, H] + \frac{1}{2} [\Omega, [\Omega, H]] + \cdots$$

Tsukiyama, Bogner, Schwenk, PRC 2012

Morris, Parzuchowski, Bogner, PRC 2015

All operators truncated at two-body level IMSRG(2) IMSRG(3) in progress (S.R. Stroberg)

Step 1: Decouple core

Can we achieve accuracy of large-space methods?

 $\langle \tilde{\Psi}_n | P \tilde{H} P | \tilde{\Psi}_n \rangle \approx \langle \Psi_i | H | \Psi_i \rangle$

Valence-Space IMSRG

Explicitly construct unitary transformation from sequence of rotations

$$U = e^{\Omega} = e^{\eta_n} \dots e^{\eta_1} \quad \eta = \frac{1}{2} \arctan\left(\frac{2H_{\text{od}}}{\Delta}\right) - \text{h.c}$$
$$\tilde{H} = e^{\Omega} H e^{-\Omega} = H + [\Omega, H] + \frac{1}{2} [\Omega, [\Omega, H]] + \cdots$$

All operators truncated at two-body level IMSRG(2) IMSRG(3) in progress (S.R. Stroberg)

Tsukiyama, Bogner, Schwenk, PRC 2012 Morris, Parzuchowski, Bogner, PRC 2015

 $|\Phi_0\rangle = |^{16}O\rangle$

Valence-Space IMSRG

TRIUMF Benchmarking VS-IMSRG: from Oxygen to Calcium

New approach accesses *all* nuclei: agrees to 1% with large-space methods

Stroberg et al., PRL (2017)

Agreement with *experiment* deteriorates for heavy chains (due to input Hamiltonian)

Significant gain in applicability with little/no sacrifice in accuracy; Any operator can be calculated Low computational cost: ~1 node-day/nucleus

TRIUMF Connection to Infinite Matter: Saturation as a Guide

NN+3N force with good reproduction of ground-state energies

1.8/2.0 (EM) reproduces ground-state energies through ⁷⁸Ni

Slight underbinding for neutron-rich oxygen

Opens possibility for reliable ab initio predictions across the nuclear chart!

Accesses **all** properties of **all** nuclei:

- Ground states, excited states, charge radii, electroweak transitions...
- Test nuclear forces across wide range of nuclei

Breadth of Ab Initio Theory

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces, electroweak physics

$$H\psi_n = E_n\psi_n$$

- Nuclear many-body problem

Towards Global Ab Initio Calculations

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces, electroweak physics

fics
$$H\psi_n = E_n\psi_n$$

Towards Global Ab Initio Calculations

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces, electroweak physic
- Nuclear many-body problem

cs
$$H\psi_n = E_n\psi_n$$

Towards Global Ab Initio Calculations

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces, electroweak physic
- Nuclear many-body problem

cs
$$H\psi_n = E_n\psi_n$$

Will We Ever Compute ²⁰⁸Pb?

Improvements in storage of 3N matrix elements greatly expands reach of ab initio theory!

Towards Global Ab Initio Calculations

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces, electroweak physics
- Nuclear many-body problem

cs
$$H\psi_n = E_n\psi_n$$

Towards Global Ab Initio Calculations

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces, electroweak physics
- Nuclear many-body problem

ics
$$H\psi_n = E_n\psi_n$$

Global Grou State Energy Residuals

Ab initio calculations of nearly 700 nuclei... how to analyze i

rms deviation at level of BW Mass formula, approaching EDF models

Input Hamiltonians fit to A=2,3,4 - not biased towards known data

What is deviation for separation energies? Apply to nuclear driplines

TRIUMF Deviations from Experimental Separation Energies

All corrected distributions approximately Gaussian centered at 0

Certain residuals correlated – must correct for this in probabilities

Assume unmeasured nuclei also follow this distribution

Estimating Dripline Uncertainites

Determine rms deviation from experiment – extrapolate this uncertainty beyond data

Assign probability that a particular nucleus is bound

RIUMF

Dripline Prediction to Iron Isotopes

First predictions of proton and neutron driplines from first principles

Known drip lines largely predicted within uncertainties (issues remain at shell closures) Provide ab initio predictions for neutron-rich region

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces, electroweak physics

cs
$$H\psi_n = E_n\psi_n$$

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces, electroweak physics

s
$$H\psi_n = E_n\psi_n$$

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces, electroweak physics
- Nuclear many-body problem

s
$$H\psi_n = E_n\psi_n$$

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces, electroweak physics

- Nuclear many-body problem

s
$$H\psi_n = E_n\psi_n$$

10-15 years ago 80 8-10 years ago 3-5 years ago Today 60 Ζ **Major Puzzles with EW and BSM Physics** 1) GT transitions and g_A quenching: a template for progress 40 20 WE NEED GO GALK ... ABOUT SA QUENCHING ... 20 40 100 120 140

Beta-Decay "Puzzle": Quenching of g_A

"Long-standing problem"¹ in weak decays: experimental values systematically smaller than theory

¹ papers from the 1970's

Beta-Decay "Puzzle": Quenching of g_A

Beta-Decay "Puzzle": Quenching of g_A

Beta-Decay "Puzzle": Quenching of g_A

∂TRIUMF

Beta-Decay "Puzzle": Quenching of g_A

Beta-Decay "Puzzle": Quenching of g_A

∂TRIUMF

Beta-Decay "Puzzle": Quenching of g_A

∂TRIUMF

Long-standing problem in weak decays: experimental values systematically smaller than theory

Brown, Wildenthal (1985)

% TRIUMF Large-Scale Efforts for Ab Initio GT Transitions

Calculate large GT matrix elements

$$M_{\rm GT} = g_A \left\langle f | \mathcal{O}_{\rm GT} | i \right\rangle$$
$$\mathcal{O}_{\rm GT} = \mathcal{O}_{\sigma\tau}^{\rm 1b} + \mathcal{O}_{2BC}^{\rm 2b}$$

- Light, medium, and heavy regions
- Benchmark different ab initio methods
- Wide range of NN+3N forces
- Consistent inclusion of 2BC

NUCLEAR PHYSICS

Beta decay gets the ab initio treatment

One of the fundamental radioactive decay modes of nuclei is β decay. Now, nuclear theorists have used first-principles simulations to explain nuclear β decay properties across a range of light- to medium-mass isotopes, up to ¹⁰⁰Sn.

% TRIUMF Large-Scale Efforts for Ab Initio GT Transitions

Calculate large GT matrix elements

$$M_{\rm GT} = g_A \left\langle f | \mathcal{O}_{\rm GT} | i \right\rangle$$
$$\mathcal{O}_{\rm GT} = \mathcal{O}_{\sigma\tau}^{\rm 1b} + \mathcal{O}_{2BC}^{\rm 2b}$$

- Light, medium, and heavy regions
- Benchmark different ab initio methods
- Wide range of NN+3N forces
- Consistent inclusion of 2BC

NUCLEAR PHYSICS

Beta decay gets the ab initio treatment

One of the fundamental radioactive decay modes of nuclei is β decay. Now, nuclear theorists have used first-principles simulations to explain nuclear β decay properties across a range of light- to medium-mass isotopes, up to ¹⁰⁰Sn.

GT Transitions in Light nuclei and ¹⁰⁰Sn

NCSM in light nuclei, **CC** calculations of GT transition in ¹⁰⁰Sn from different forces

Addition of 2BC further quenches and reduces spread in results

GT Transitions in Light nuclei and ¹⁰⁰Sn

NCSM in light nuclei, CC calculations of GT transition in ¹⁰⁰Sn from different forces

Addition of 2BC further quenches and reduces spread in results

≈TRIUMF

Ab Initio GT Decays in Medium-Mass Region

Comparison to standard phenomenological shell model

Ab initio calculations across the chart explain data with free-space g_A

Refine results with improvements in forces and many-body methods Gysbers et al., Nature Phys. (2019)

In progress: muon capture

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces, electroweak physics

cs
$$H\psi_n = E_n\psi_n$$

∂TRIUMF

Towards 0vββ **Decay**

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces, electroweak physics
- Nuclear many-body problem

RIUMF

Ab Initio 2vββ Decay: ⁴⁸Ca

Consistent many-body wfs/operators from chiral NN+3N forces (with 2b currents)

VS-IMSRG: decrease in final matrix element

Potential issues: limited 1⁺ states, missing IMSRG(3)... benchmarks with CC underway...

CRIUMF Benchmarking 0vββ Decay in Light Nuclei: ⁸He

Benchmark with quasi-exact NCSM and CC theory in light systems

Reasonable/good agreement in all cases!

CRIUMF Benchmarking 0vββ Decay in Light Nuclei: ¹⁰He

Benchmark with quasi-exact NCSM and CC theory in light systems

Reasonable/good agreement in all cases!

CRIUMF Benchmarking 0vββ Decay in Light Nuclei: ¹⁴C

Benchmark with quasi-exact NCSM and CC theory in light systems

Reasonable/good agreement in all cases!

Benchmark with quasi-exact NCSM and CC theory in light systems

Reasonable to good agreement in all cases!

Ab Initio 0vββ Decay: ⁴⁸Ca

Ab Initio 0vββ Decay: ⁴⁸Ca

 $M^{0
u}$ 0
uetaeta

Ab Initio 0vββ Decay: ⁴⁸Ca

Good agreement with GCM-IMSRG (tentative)... Further benchmarks underway

0
uetaeta

 $M^{0\nu}$

Ab Initio 0vββ Decay: ⁷⁶Ge

$M^{0 u}$ 0 uetaeta

Ab Initio 00vββ Decay: ⁸²Se

Results consistently below lowest model predictions...

 $M^{0
u}$ 0
uetaeta

Ab Initio $00v\beta\beta$ Decay: ¹³⁰Te, ¹³⁶Xe

Consistent many-body wfs/operators from chiral NN+3N forces (no 2b currents)

≈TR//J/MF

 $M^{0
u}$

 $0\nu\beta\beta$

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces, electroweak physics
- Nuclear many-body problem

ics
$$H\psi_n = E_n\psi_n$$

∂TRIUMF

WIMP-Nucleus Scattering

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

 $H\psi_n = E_n\psi_n$

- Nuclear forces, electroweak physics
- Nuclear many-body problem

TRIUMF Structure Functions from Phenomenological Shell Model

Previous advances: phenomenological wfs + bare operator (axial currents)

CRIUMF SD WIMP-Nucleus Response: Benchmarking ¹⁹F

Ab initio: Consistent many-body wfs/operators from chiral NN+3N forces + 2B currents Two NN+3N interactions: 1.8/2.0(EM), NN+3N(LNL)

CRIUMF SD WIMP-Nucleus Response: Benchmarking ²³Na

Ab initio: Consistent many-body wfs/operators from chiral NN+3N forces + 2B currents Two NN+3N interactions: 1.8/2.0(EM), NN+3N(LNL)

CALC CONTRIENT SD WIMP-Nucleus Response: Benchmarking ²⁷**AI**

Ab initio: Consistent many-body wfs/operators from chiral NN+3N forces + 2B currents Two NN+3N interactions: 1.8/2.0(EM), NN+3N(LNL)

CRIUMF SD WIMP-Nucleus Response: Benchmarking ²⁹Si

Ab initio: Consistent many-body wfs/operators from chiral NN+3N forces + 2B currents Two NN+3N interactions: 1.8/2.0(EM), NN+3N(LNL)

TRIUMF Ab Initio SD WIMP-Nucleus Response: ¹⁹F, ²³Na, ²⁷Al, ²⁹Si

Ab initio: Consistent many-body wfs/operators from chiral NN+3N forces + 2B currents Two NN+3N interactions: 1.8/2.0(EM), NN+3N(LNL)

Padua, Leutheusser, Stroberg, JDH, in prep.

In progress: all nuclear targets to Xe, Spin Independent

RIUMF

Present and Future for VS-IMSRG

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

Nuclear Structure Development of forces and currents¹ Dripline predictions for medium-mass Evolution of magic numbers from masses, radii, spectroscopy, EM transitions: ⁷⁸Ni Multi-shell theory: Island of inversion² Forbidden decays³

Atomic systems⁴

UBC

Fundamental Symmetries/BSM PhysicsEffective electroweak operators: GT quenchingEffective 0vββ decay operator5WIMP-Nucleus scattering6Superallowed Fermi transitions7Symmetry-violating moments [molecules]8

Outstanding issues

Controlled IMSRG(3) approximation* E2 operators/collectivity problematic Understand discrepancies with CC Quantify uncertainties

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces, electroweak physics $H\psi_n=E_n\psi_n$
- Nuclear many-body problem

Similar: Quenching of Magnetic Moments?

Similar effects expected as in GT quenching: renormalized operator + 2BC ~0.75-0.8

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces, electroweak physics $H\psi_n=E_n\psi_n$
- Nuclear many-body problem

Ζ

TRIUMF Connection to Infinite Matter: Saturation as a Guide

NN+3N force with good reproduction of ground-state energies

1.8/2.0 (EM) reproduces ground-state energies through ⁷⁸Ni

Slight underbinding for neutron-rich oxygen

TRIUMF Connection to Infinite Matter: Saturation as a Guide

NN+3N force with good reproduction of ground-state energies (but poor radii)

Description of radii depends on saturation density

No interactions reproduces perfectly total charge radii

Charge Radii Across Isotopic Chains

Study charge radii across isotopic chains:

$$\left\langle R^{2}\right\rangle = \left\langle \Phi_{0} \mid \tilde{R}^{2} \mid \Phi_{0} \right\rangle + \left\langle \Phi_{\rm SM} \mid \tilde{R}^{2} \mid \Phi_{\rm SM} \right\rangle$$

2.0/2.0 (PWA) "best" results: overpredicts experiment, less pronounced trends Clear discrepancy at ⁶⁸Ni: benchmark against CC and GGF in progress

% TRIUMF

Charge Radii Across Isotopic Chains

Study charge radii across isotopic chains:

$$\left\langle R^2 \right\rangle = \left\langle \Phi_0 \mid \tilde{R}^2 \mid \Phi_0 \right\rangle + \left\langle \Phi_{\rm SM} \mid \tilde{R}^2 \mid \Phi_{\rm SM} \right\rangle$$

2.0/2.0 (PWA) "best" results: overpredicts experiment, less pronounced trends Clear discrepancy at ⁶⁸Ni: benchmark against CC and GGF in progress

Multi-shell VS-IMSRG in progress...

N=32 Magic Number: Charge Radii

Charge radii of ⁴⁹⁻⁵²Ca measured from laser spectroscopy at COLLAPS, CERN

Unexpected increase in charge radius questions magicity of ⁵²Ca

Theory underestimates this increase – challenge for future

Relative Charge Radii Across Isotopic Chains: Ni

Study charge radii across isotopic chains:

$$\left\langle R^{2}\right\rangle = \left\langle \Phi_{0} \mid \tilde{R}^{2} \mid \Phi_{0} \right\rangle + \left\langle \Phi_{\rm SM} \mid \tilde{R}^{2} \mid \Phi_{\rm SM} \right\rangle$$

Study radii normalized to reference (as measured in laser spec. experiments)

1.8/2.0(EM) reproduces trends more accurately in Ni isotopes

% TRIUMF

Charge Radii Across Isotopic Chains: Cu

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces, electroweak physics $H\psi_n=E_n\psi_n$
- Nuclear many-body problem

Ζ

Global Trends in Absolute B(E2): sd Shell

Study charge E2 transitions across sd-shell

USDB with effective charges typically reproduces absolute values well VS-IMSRG (no effective charges) typically underpredicts experiment Trends well reproduced in both...

% TRIUMF

Global Trends in B(E2): IS/IV Components

Study charge E2 transitions across sd-shell: IS (M_0) and IV (M_1)

Origin of E2 Puzzle ¹⁴C in psd Shell

Perform CC and VS-IMSRG calculations of ¹⁴C in toy psd space with phenomenological potential

Do Cross-Shell Spaces Improve Radii?

Improved trends across oxygen isotopes with pd5s1 space!

Calcium... not so much...

% TRIUM

Shell Closures in Neutron-Rich Ni

Defect 2: Incomplete convergence near threshold – clear trend in residuals

Separate trends for VS change and no change

Correct VS-IMSRG results with linear fit of residuals

Present and Future for VS-IMSRG

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

% TRIUMF

Present and Future for VS-IMSRG

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

Fundamental Symmetries/BSM Physics Effective electroweak operators: GT quenching Effective 0vββ decay operator⁵ WIMP-Nucleus scattering⁶ Superallowed Fermi transitions⁷

Symmetry-violating moments [molecules]⁸

Predictions with Nuclear Models

How well can nuclear models motivate experiments, predict beyond data?

Work well where informed by data

Predictions with Nuclear Models

How well can nuclear models motivate experiments, predict beyond data?

Models can extrapolate unreliably

Spread in results ≠ meaningful uncertainty

RIUMF

Predictions with Nuclear Models

How well can nuclear models motivate experiments, predict beyond data?

 \cap

Models can extrapolate unreliably

Spread in results \neq meaningful uncertainty

TRIUMF Major Issue II: Magic Numbers in Nuclei

Magic numbers: pillars of nuclear structure, vital for r-process nucleosynthesis

Magic Numbers in Nuclei

Magic numbers: pillars of nuclear structure, novel evolution in exotic nuclei

Magic Numbers in Nuclei

Magic numbers: pillars of nuclear structure, novel evolution in exotic nuclei

Signatures of Magic Numbers

Sharp decrease in separation energy (masses) Elevated first excited 2+ energy (spectroscopy) Tightly bound (decreased radii)

Must observe all signatures – many experiments (and calculations) needed!

Discovery, accelerated

RIUMF

Evolution of N=32,34 Magic Numbers

Magic numbers: pillars of nuclear structure, novel evolution in exotic nuclei

Highlight of TRIUMF theory and experiment:

Discovery and evolution of new N=32,34 magic numbers in calcium region

Classic Picture of Magic Numbers

2013 potentially new magic numbers from 2⁺ energies: N=32,34

Phenomenological Models

Reproduce magic N=28,32; discrepancy at N=34 (beyond data)

Ab initio theories

Predict all magic numbers; consistent at N=34

% TRIUMF

Evolution of N=32 Magic Number: Masses

Further questions: how do magic numbers evolve with proton number?

Current frontier of measurements and theory

New TITAN Measurements of Ti masses

Probe "dawning" of N=32 magic number

Ab Initio from NN+3N

Generally good agreement, but predicts appearance too early

Future: Evolution to be measured in Ar, Cl

Leistenschneider et al, PRL 2018

TRIUMF Future: Evolution of N=28,32,34 Magic Numbers

Ab initio predictions from above calcium towards oxygen – persistence of N=34

Missing Pillar: Magicity of ⁷⁸Ni?

New measurement at RIKEN 2⁺ energy in ⁷⁸Ni – clear peak compared to ⁷⁶Ni

Peak wrt neighboring systems well predicted by IMSRG (also phenomenology)

First evidence for the (double) magicity of ⁷⁸Ni!

Discovery, accelerated

% TRIUMF

N=34 Magic Number in Calcium: Masses

2013-2018 impressive series of experiments; ideal example of theory/exp overlap Story continues at ???

2017:

Updated ab initio theory predicts shell closure

RIUMF

Persistence of N=34 Magic Number

New measurement at RIKEN: 2⁺ energy in ⁵²Ar – clear peak at N=34

Agreement with IMSRG and other ab initio predictions (coupled cluster theory)

First evidence for persistence of N=34 magic number away from calcium! 2018-09-13

Natural Orbitals in IMSRG

They work! Next, test in VS formulation...

Miyagi, Stroberg, JDH... in prep

Chronological Reach of Ab Initio Theory

Moore's law: exponential growth in computing power

Methods for light nuclei (QMC, NCSM) scale exponentially with mass

Towards Neutrinoless Double Beta Decay

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces, electroweak physics
- Nuclear many-body problem

% TRIUMF Nature of Dark Matter: WIMP-Nucleus Scattering

Exclusion plots for WIMP-nucleon total cross section: spin-dependent (axial) currents

Differential cross section: compare results from different target nuclei

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p^2} = \frac{8G_F^2}{(2J_i+1)v^2}S_A(p)$$

The Next Big Discovery? 0vββ-decay

*****TRIUMF

Uncertainty from Nuclear Matrix Element; bands do not represent rigorous uncertainties

Breadth of Ab Initio Theory

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces, electroweak physics
- Nuclear many-body problem

$$H\psi_n = E_n\psi_n$$

TRIUMF Evolution of N=32 Magic Number: Charge Radii

Charge radii of ^{49,51,52}Ca, obtained from laser spectroscopy experiments at COLLAPS, CERN **Unexpected large increase in charge radius questions the magicity of** ⁵²Ca

meoretical models all underestimate the charge radius

Ab-initio calculations reproduce the trend of charge radii

2018-09-13

Approaches to Nuclear Structure

"The first, the basic approach, is to study the elementary particles, their properties and mutual interaction. Thus one hopes to obtain knowledge of the nuclear forces. If the forces are known, one should, in principle, be able to calculate deductively the properties of individual nuclei. *Only after this has been accomplished can one say that one completely understands nuclear structure...*

-M. Goeppert-Mayer, Nobel Lecture

Approaches to Nuclear Structure

"The first, the basic approach, is to study the elementary particles, their properties and mutual interaction. Thus one hopes to obtain knowledge of the nuclear forces. If the forces are known, one should, in principle, be able to calculate deductively the properties of individual nuclei. *Only after this has been accomplished can one say that one completely understands nuclear structure...*

The other approach is that of the experimentalist and consists in obtaining by direct experimentation as many data as possible for individual nuclei. One hopes in this way to find regularities and correlations which give a clue to the structure of the nucleus... The shell model, although proposed by theoreticians, really corresponds to the experimentalist's approach."

-M. Goeppert-Mayer, Nobel Lecture

Ab initio approach vs. *phenomenological models* To date, nuclear physics largely phenomenological

Typical IMSRG Failure

- Flow of single-particle energies
 - At the very beginning of valencedecoupling flow, some of pf-shell orbits come down.
 - Intuitively, we expect that P- and Qspace single particle energies do not mix.
 - At the beginning of the flow, the slope of single-particle energies (df/ds) seems to be crucial.

Chronological Reach of Ab Initio Theory

Moore's law: exponential growth in computing power

Methods for light nuclei (QMC, NCSM) scale exponentially with mass

Polynomial scaling methods developed (CC, IMSRG, SCGF...) **Explosion in limits of ab initio theory**

Shell Closures in Neutron-Rich Ni

TRIUMF Deviations from Experimental Separation Energies

Defect 1: Clear artifacts when changing valence spaces

TRIUMF Deviations from Experimental Separation Energies

Defect 1: Clear artifacts when changing valence spaces

Residuals at Shell/Non-Shell Closures

Potential errors at shell closures from changing valence spaces

Differentiate between "closure" and "no closure" cases

Distributions approximately Gaussian

Non closed shells approximately centered at 0; rms approximately 1MeV

TRIUMF Improve Cross-Shell Physics: Multi-Shell Spaces

Essential for many applications: island of inversion, forbidden transitions, heavier beta decay cases **IMSRG typically fails!**

Flow of single-particle energies

Proposed Fix: Modified Generator

Proposed fix: modify generator to give constant shift to energy denominator

Never have negative energy denominators if on order of hw...

K. Suzuki, Prog. Theor. Phys. 58, 1064 (1977).

N. Tsunoda, K. Takayanagi, M. Hjorth-Jensen, and T. Otsuka, Phys. Rev. C 89, 024313 (2014).

Proposed Fix: Modified Generator

Proposed fix: modify generator to give constant shift to energy denominator

Never have negative energy denominators if on order of hw...

Miyagi, Stroberg, JDH... in prep

Approaches to Nuclear Structure

"The first, the basic approach, is to study the elementary particles, their properties and mutual interaction. Thus one hopes to obtain knowledge of the nuclear forces. If the forces are known, one should, in principle, be able to calculate deductively the properties of individual nuclei. *Only after this has been accomplished can one say that one completely understands nuclear structure...*

-M. Goeppert-Mayer, Nobel Lecture

Approaches to Nuclear Structure

"The first, the basic approach, is to study the elementary particles, their properties and mutual interaction. Thus one hopes to obtain knowledge of the nuclear forces. If the forces are known, one should, in principle, be able to calculate deductively the properties of individual nuclei. *Only after this has been accomplished can one say that one completely understands nuclear structure...*

The other approach is that of the experimentalist and consists in obtaining by direct experimentation as many data as possible for individual nuclei. One hopes in this way to find regularities and correlations which give a clue to the structure of the nucleus... The shell model, although proposed by theoreticians, really corresponds to the experimentalist's approach."

-M. Goeppert-Mayer, Nobel Lecture

Ab initio approach vs. *phenomenological models* To date, nuclear physics largely phenomenological

Major Issue: Center of Mass

 So far, we added the center-of-mass Hamiltonian at the shell-model calculation stage:

 $H \longrightarrow H_{\rm VS} + \beta H_{\rm cm} \longrightarrow {\rm energies}$

But, H_{VS} is no longer represented in HO basis. We should add H_{cm} from the beginning:

First Results

With selected orbitals, free of CoM contamination

Excited states in ¹⁶O, Island of Inversion

Structure of Light Tin Isotopes

Extend ab initio to heavy-mass region: magicity of ¹⁰⁰Sn, controversial level ordering in ¹⁰¹Sn

Predicts doubly magic nature from 2⁺ energies and B(E2) systematics

Both calculations predict 5/2+ ground state

TRIUMF Connection to Infinite Matter: Saturation as a Guide

NN+3N force with good reproduction of ground-state energies

1.8/2.0 (EM), new LNL potential reproduce ground-state energies through ⁷⁸Ni

NNLOsat, typically underbinds

Breadth of Ab Initio Theory

Aim of modern nuclear theory: Develop unified *first-principles* picture of structure and reactions

- Nuclear forces, electroweak physics
- Nuclear many-body problem

$$H\psi_n = E_n\psi_n$$

(Two-Neutrino) Double-Beta Decay

In rare cases beta decay is energetically forbidden – simultaneous beta decays

2nd-order weak process allowed by standard model

$$\left(T_{1/2}^{2\nu\beta\beta}\right)^{-1} = G^{2\nu} \left(Q_{\beta\beta}, Z\right) \left|M^{2\nu}\right|^2$$

(Two-Neutrino) Double-Beta Decay

In rare cases beta decay is energetically forbidden – simultaneous beta decays

Observed in ~15 nuclei

Isotope	$T_{1/2}(2\nu)$ (years)	Isotope	$T_{1/2}(2\nu)$ (years)
⁴⁸ Ca	$4.4^{+0.6}_{-0.5} \times 10^{19}$	¹¹⁶ Cd	$(2.8\pm0.2)\times10^{19}$
⁷⁶ Ge	$(1.5 \pm 0.1) \times 10^{21}$	¹²⁸ Te	$(1.9 \pm 0.4) \times 10^{24}$
⁸² Se	$(0.92\pm 0.07)\times 10^{20}$	¹³⁰ Te	$\left(6.8^{+1.2}_{-1.1} ight) imes 10^{20}$
⁹⁶ Zr	$(2.3 \pm 0.2) \times 10^{19}$	¹⁵⁰ Nd	$(8.2 \pm 0.9) \times 10^{18}$
¹⁰⁰ Mo	$(7.1 \pm 0.4) \times 10^{18}$	150 Nd- 150 Sm(0 ⁺ ₁)	$1.33^{+0.45}_{-0.26} imes 10^{20}$
100 Mo- 100 Ru(0 ⁺ ₁)	$5.9^{+0.8}_{-0.6} imes 10^{20}$	²³⁸ U	$(2.0 \pm 0.6) \times 10^{21}$

2nd-order weak process allowed by standard model

$$\left(T_{1/2}^{2\nu\beta\beta}\right)^{-1} = G^{2\nu} \left(Q_{\beta\beta}, Z\right) \left|M^{2\nu}\right|^2$$

Lifetimes ~ 10²⁰ years: **governed by NME**

RIUMF

Convergence of N=40 Gap

Size of N=70 gap clearly not converged wrt E3max – for neutron-rich Sn, In, Cd...

 $\frac{1/2}{3/2}$

--11/2

RIUMF

Convergence of N=40 Gap

Size of N=70 gap clearly not converged wrt E3max – for neutron-rich Sn, In, Cd...

New capabilities: converged spectra in N=82 region!

Explore new physics near ¹³²Sn!

-1/23/2

GT Transitions in Light nuclei and ¹⁰⁰Sn

NCSM in light nuclei, **CC** calculations of GT transition in ¹⁰⁰Sn from different forces

Gysbers et al., Nature Phys. (2019)

GT Transitions in Light nuclei and ¹⁰⁰Sn

NCSM in light nuclei, **CC** calculations of GT transition in ¹⁰⁰Sn from different forces

Without 2B currents, large spread in results

GT Transitions in Light nuclei and ¹⁰⁰Sn

NCSM in light nuclei

Gysbers et al., Nature Phys. (2019)

GT Transitions in Light nuclei and ¹⁰⁰Sn

NCSM in light nuclei

2BC provide modest quenching in most cases

Gysbers et al., Nature Phys. (2019)

VS-IMSRG Benchmarks

Convergence and method benchmarks of VS-IMSRG GT transitions

TABLE IV. Gamow Teller (GT) transition strength in 10 C to the first 1_1^+ in 10 B for the NN-N⁴LO +3N_{lnl} interaction calculated in the VS-IMSRG(2) and NCSM approaches.

Method	$ M_{ m GT}(oldsymbol{\sigma}oldsymbol{ au}) $	$ M_{\rm GT} $
VS-IMSRG(2)	1.94	1.88
NCSM	2.01	1.92

TABLE III. Gamow Teller (GT) transition strength in ¹⁴O to the second 1_2^+ in ¹⁴N for the NNLO_{sat} and NN-N⁴LO +3N_{lnl} interactions calculated in the EOM-CCSD, EOM-CCSDT-1, VS-IMSRG, and NCSM approaches.

Interaction	$\mathrm{NNLO}_{\mathrm{sat}}$		$NN-N^4LO+3N_{lnl}$	
Method	$ M_{ m GT}(oldsymbol{\sigma au}) $	$ M_{ m GT} $	$ M_{ m GT}(oldsymbol{\sigma au}) $	$ M_{ m GT} $
EOM-CCSD	2.15	2.08	2.26	2.06
EOM-CCSDT-1	1.77	1.69	1.97	1.86
VS-IMSRG(2)	1.72	1.76	1.83	1.83
NCSM	1.80	1.69	1.86	1.78

Well converged and good agreement with other ab initio methods

Ab Initio GT Decays in Medium-Mass Region

Ab initio calculations of large GT transitions in sd, pf shells

*****TRIUMF

Bare operator similar to phenomenological shell model

Modest quenching from consistent ab initio wavefunctions and operators

Superallowed Fermi Transitions

Essential for determinination of V_{ud}

Standard approach (T/H):

$$\delta_{\rm C} = \underbrace{\delta_{\rm C1}}_{\substack{\text{configuration} \\ \text{mixing}}} + \underbrace{\delta_{\rm C2}}_{\substack{\text{wave function} \\ \text{mismatch}}}$$

Ab initio approach

$$|M_F|^2 = |M_F^0|^2 (1 - \delta_C)$$

$$\begin{split} \delta_{\mathcal{C}} &= \left\{ H_{pp}(s) \neq H_{nn}(s) \neq H_{pn}(s) \right\} + \\ \left\{ \tau(s) &= U(s) \tau U^{\dagger}(s) \right\} + \left\{ \langle \phi_p^{\mathrm{HF}} | \tau | \phi_n^{\mathrm{HF}} \rangle \neq 1 \right\} \end{split}$$

Martin, JDH, Leach, Stroberg, in prep.

TRIUMF Comparison with DFT/Machine Learning Predictions

Recent DFT analysis from Si-Ti based on Bayesian machine learning

Largely consistent prediction of drip line

Major Issue I: Limits of Existence of Nuclei

Where (and what) is the nuclear dripline?

Limits defined as last isotope with positive neutron separation energy

- Nucleons "drip" out of nucleus

Neutron dripline experimentally established to Z=8

Already well beyond where fit to data!

Valence-Space IMSRG

Explicitly construct unitary transformation from sequence of rotations

$$U = e^{\Omega} = e^{\eta_n} \dots e^{\eta_1} \quad \eta = \frac{1}{2} \arctan\left(\frac{2H_{\text{od}}}{\Delta}\right) - \text{h.c.}$$

$$\tilde{H} = e^{\Omega}He^{-\Omega} = H + [\Omega, H] + \frac{1}{2} [\Omega, [\Omega, H]] + \cdots$$

$$\tilde{\mathcal{O}} = e^{\Omega}\mathcal{O}e^{-\frac{\text{Potential sources of error}}{1} \text{Deficiencies in nuclear forces / neglected EW currents}}$$

$$2) \text{ Incomplete convergence in basis } \checkmark (\mathsf{N},\mathsf{Z} < 50)$$

$$3) \text{ Truncations in many-body operators?}$$

$$\frac{\mathcal{O}}{\mathcal{O}} = \left(\tilde{\Psi}_n | P\tilde{H}P | | \tilde{\Psi}_n \right) \approx \langle \Psi_i | H | \Psi_i \rangle$$

$$\langle \tilde{\Psi}_n | P\tilde{M}_{0\nu}P | | \tilde{\Psi}_n \rangle \approx \langle \Psi_i | M_{0\nu} | \Psi_i \rangle$$

$$\frac{\mathcal{O}}{\mathcal{O}} = \left(\tilde{\Psi}_n | P\tilde{H}P | | \tilde{\Psi}_n \rangle \approx \langle \Psi_i | M_{0\nu} | \Psi_i \rangle$$

$$\frac{\mathcal{O}}{\mathcal{O}} = \left(\tilde{\Psi}_n | P\tilde{H}P | | \tilde{\Psi}_n \rangle \approx \langle \Psi_i | M_{0\nu} | \Psi_i \rangle$$

$$\frac{\mathcal{O}}{\mathcal{O}} = \left(\tilde{\Psi}_n | P\tilde{H}P | | \tilde{\Psi}_n \rangle \approx \langle \Psi_i | M_{0\nu} | \Psi_i \rangle$$

$$\frac{\mathcal{O}}{\mathcal{O}} = \left(\tilde{\Psi}_n | P\tilde{H}P | | \tilde{\Psi}_n \rangle \approx \langle \Psi_i | M_{0\nu} | \Psi_i \rangle$$

$$\frac{\mathcal{O}}{\mathcal{O}} = \left(\tilde{\Psi}_n | P\tilde{H}P | | \tilde{\Psi}_n \rangle \approx \langle \Psi_i | M_{0\nu} | \Psi_i \rangle$$

$$\frac{\mathcal{O}}{\mathcal{O}} = \left(\tilde{\Psi}_n | P\tilde{H}P | | \tilde{\Psi}_n \rangle \approx \langle \Psi_i | M_{0\nu} | \Psi_i \rangle$$

$$\frac{\mathcal{O}}{\mathcal{O}} = \left(\tilde{\Psi}_n | P\tilde{H}P | | \tilde{\Psi}_n \rangle \approx \langle \Psi_i | M_{0\nu} | \Psi_i \rangle$$

$$\frac{\mathcal{O}}{\mathcal{O}} = \left(\tilde{\Psi}_n | P\tilde{H}P | | \tilde{\Psi}_n \rangle \approx \langle \Psi_i | M_{0\nu} | \Psi_i \rangle$$

$$\frac{\mathcal{O}}{\mathcal{O}} = \left(\tilde{\Psi}_n | P\tilde{H}P | | \tilde{\Psi}_n \rangle \approx \langle \Psi_i | M_{0\nu} | \Psi_i \rangle$$

$$\frac{\mathcal{O}}{\mathcal{O}} = \left(\tilde{\Psi}_n | P\tilde{H}P | | \tilde{\Psi}_n \rangle \approx \langle \Psi_i | M_{0\nu} | \Psi_i \rangle$$

TRIUMF Benchmarking VS-IMSRG: from Oxygen to Calcium

New approach accesses *all* nuclei: agrees to 1% with large-space methods

Agreement with *experiment* deteriorates for heavy chains (due to input Hamiltonian)

Significant gain in applicability with little/no sacrifice in accuracy; Any operator can be calculated Low computational cost: ~1 node-day/nucleus

TRIUMF Connection to Infinite Matter: Saturation as a Guide

NN+3N force with good reproduction of ground-state energies

1.8/2.0 (EM) reproduces ground-state energies through ⁷⁸Ni

Slight underbinding for neutron-rich oxygen

Opens possibility for reliable ab initio predictions across the nuclear chart!

Accesses **all** properties of **all** nuclei:

- Ground states, excited states, charge radii, electroweak transitions...
- Test nuclear forces across range of nuclei

RIUMF

Status of 0vββ-decay Matrix Elements

All calculations to date from extrapolated phenomenological models; large spread in Pesute 51

All models missing essential physics

Impossible to assign rigorous uncert $A_{int}^{0\nu}$ ies $\underline{-}_{i} \underline{A}_{p}^{0\nu}$ lore new approach to nuclear theory!