Nuclear structure observables to shed light on neutrinoless double-beta decay

Javier Menéndez

University of Barcelona

Conference on Neutrino and Nuclear Physics, CNNP2020 Kogelberg Biosphere, 28th February 2020

$\beta\beta$ decay

Second order process in the weak interaction

Only observable in nuclei where (much faster) β -decay is forbidden energetically due to nuclear pairing interaction

$$BE(A) = -a_vA + a_sA^{2/3} + a_c\frac{Z(Z-1)}{A^{1/3}} + \frac{(A-2Z)^2}{A} + \begin{cases} -\delta_{\text{pairing}} & \text{N,Z even} \\ 0 & \text{A odd} \\ \delta_{\text{pairing}} & \text{N,Z odd} \end{cases}$$

or where β -decay is very suppressed by ΔJ angular momentum change

Nuclear matrix elements for new-physics searches

Neutrinos, dark matter studied in experiments using nuclei

Nuclear structure physics encoded in nuclear matrix elements key to plan, fully exploit experiments

$$\begin{aligned} &0\nu\beta\beta: \left(T_{1/2}^{0\nu\beta\beta}\right)^{-1} \propto g_A^4 \left| M^{0\nu\beta\beta} \right|^2 m_{\beta\beta}^2 \\ &\text{Dark matter: } \frac{\mathrm{d}\sigma_{\chi\mathcal{N}}}{\mathrm{d}\boldsymbol{q}^2} \propto \left| \sum_i c_i \zeta_i \mathcal{F}_i \right|^2 \\ &\text{CE}\nu\mathrm{NS: } \frac{\mathrm{d}\sigma_{\nu\mathcal{N}}}{\mathrm{d}\boldsymbol{q}^2} \propto \left| \sum_i c_i \zeta_i \mathcal{F}_i \right|^2 \end{aligned}$$

 $M^{0\nu\beta\beta}$: Nuclear matrix element \mathcal{F}_{i} : Nuclear structure factor

$0\nu\beta\beta$ decay nuclear matrix elements

Large difference in nuclear matrix element calculations: factor $\sim 2-3$

$\mathbf{0}\nu\beta\beta$ decay without correlations

Non-realistic spherical (uncorrelated) mother and daughter nuclei:

- Shell model (SM): zero seniority, neutron and proton J = 0 pairs
- Energy density functional (EDF): only spherical contributions

In contrast to full (correlated) calculation SM and EDF NMEs agree!

NME scale set by pairing interaction

JM, Rodríguez, Martínez-Pinedo, Poves PRC90 024311(2014)

NME follows generalized seniority model:

 $M_{GT}^{0\nu\beta\beta} \simeq \alpha_{\pi}\alpha_{\nu}\sqrt{N_{\pi}+1}\sqrt{\Omega_{\pi}-N_{\pi}}\sqrt{N_{\nu}}\sqrt{\Omega_{\nu}-N_{\nu}+1}, \text{ Barea, lachello PRC79 044301(2009)}$

Pairing correlations and $0\nu\beta\beta$ decay

 $0\nu\beta\beta$ decay favoured by proton-proton, neutron-neutron pairing, but it is disfavored by proton-neutron pairing

Ideal case: superfluid nuclei reduced with high-seniorities

Addition of isoscalar pairing reduces matrix element value

Tests of nuclear structure

Spectroscopy well described: masses, spectra, transitions, knockout...

Two-neutrino $\beta\beta$ decay, 2ν ECEC

 $2\nu\beta\beta$ decay share initial, final states, operator structure ($\sigma\tau$) as $0\nu\beta\beta$ Comparison of predicted $2\nu\beta\beta$ decay vs data

Shell model reproduce $2\nu\beta\beta$ data including "quenching"

Prediction previous to ⁴⁸Ca measurement!

Caurier, Poves, Zuker PLB 252 13(1990)

$$M^{2\nu\beta\beta} = \sum_{k} \frac{\langle \mathbf{0}_{f}^{+} | \sum_{n} \sigma_{n} \tau_{n}^{-} | \mathbf{1}_{k}^{+} \rangle \langle \mathbf{1}_{k}^{+} | \sum_{m} \sigma_{m} \tau_{m}^{-} | \mathbf{0}_{i}^{+} \rangle}{E_{k} - (M_{i} + M_{f})/2}$$

Table 2

The ISM predictions for the matrix element of several 2ν double beta decays (in MeV⁻¹). See text for the definitions of the valence spaces and interactions.

	$M^{2\nu}(exp)$	q	$M^{2\nu}(th)$	INT
48 Ca $\rightarrow ^{48}$ Ti	0.047 ± 0.003	0.74	0.047	kb3
48 Ca $\rightarrow {}^{48}$ Ti	0.047 ± 0.003	0.74	0.048	kb3g
48 Ca $\rightarrow {}^{48}$ Ti	0.047 ± 0.003	0.74	0.065	gxpf1
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	0.140 ± 0.005	0.60	0.116	gcn28:50
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	0.140 ± 0.005	0.60	0.120	jun45
82 Se $\rightarrow {}^{82}$ Kr	0.098 ± 0.004	0.60	0.126	gcn28:50
82 Se $\rightarrow {}^{82}$ Kr	0.098 ± 0.004	0.60	0.124	jun45
$^{128}\text{Te} \rightarrow ^{128}\text{Xe}$	0.049 ± 0.006	0.57	0.059	gcn50:82
$^{130}\text{Te} \rightarrow ^{130}\text{Xe}$	0.034 ± 0.003	0.57	0.043	gcn50:82
136 Xe $\rightarrow $ 136 Ba	0.019 ± 0.002	0.45	0.025	gcn50:82

Caurier, Nowacki, Poves, PLB 711 62 (2012)

¹²⁴Xe 2ν double electron-capture search by XMASS, XENON1T experiments

Shell model configuration space

For xenon, use ¹⁰⁰Sn core

with $0g_{7/2}$, $1d_{5/2}$, $2s_{1/2}$, $1d_{3/2}$, $0h_{11/2}$ orbitals for neutrons and protons

 $^{124}_{54}Xe_{70} \rightarrow ^{124}_{52}Te_{72}$ demanding: almost mid-shell neutron configurations, truncated configuration space:

- Maximum two-nucleon excitations to 2s_{1/2}, 1d_{3/2}, 0h_{11/2} orbitals
- Like above neutron 0g_{7/2} fully occupied no restriction on protons
- Like above neutron 1d_{5/2} fully occupied no restriction on protons

Combine results of the approximate shell model diagonalizations

β -decay Gamow-Teller transitions: "quenching"

 β decays (e^- capture): phenomenology vs ab initio

Martinez-Pinedo et al. PRC53 2602(1996)

 $\langle F| \sum_{i} [g_A \sigma_i \tau_i^-]^{\text{eff}} |I\rangle$, $[\sigma_i \tau]^{\text{eff}} \approx 0.7 \sigma_i \tau$ Standard shell model needs $\sigma_i \tau$ "quenching"

Gysbers et al. Nature Phys. 15 428 (2019)

Ab initio calculations including meson-exchange currents do not need any "quenching"

10 / 25

Gamow-Teller strength distributions

GT strength distribution complements β -decay beyond Q-value region

Similar "quenching" q= 0.57 needed in GT decays in xenon mass region Smaller "quenching" q= 0.42 needed in $2\nu\beta\beta$ of ¹³⁶Xe

Two-neutrino ECEC of ¹²⁴Xe

Predicted 2*v*ECEC half-life:

shell model error bar largely dominated by "quenching" uncertainty

Shell model, QRPA and Effective theory (ET) predictions suggest experimental detection close to XMASS 2018 limit

Two-neutrino ECEC of ¹²⁴Xe

Predicted 2ν ECEC half-life: shell model error bar largely dominated by "quenching" uncertainty

Shell model, QRPA and Effective theory (ET) predictions good agreement with XENON1T measurement of 2ν ECEC!

Effective theory of $\beta\beta$ decay

Effective theory (ET) for $\beta\beta$ decay: spherical core coupled to one nucleon

Couplings adjusted to experimental data, uncertainty given by effective theory (breakdown scale, systematic expansion)

Use β -decay data to predict $2\nu\beta\beta$ decay Good agreement, large error (leading-order in ET)

Coello-Pérez, JM, Schwenk PRC 98, 045501 (2018)

Electron spectrum in two-neutrino $\beta\beta$ decay

Precise $2\nu\beta\beta$ half-life, next term in expansion of energy denominator

$$(T_{1/2}^{2\nu})^{-1} \simeq g_A^4 \left| (M_{GT}^{2\nu})^2 G_0^{2\nu} + M_{GT}^{2\nu} M_{GT-3}^{2\nu} G_2^{2\nu} + ... \right|$$

$$\begin{split} M_{GT}^{2\nu} &= \sum_{j} \frac{\langle \mathbf{0}_{f}^{+} | \sum_{l} \sigma_{l} \tau_{l}^{-} | \mathbf{1}_{j}^{+} \rangle \langle \mathbf{1}_{j}^{+} | \sum_{l} \sigma_{l} \tau_{l}^{-} | \mathbf{0}_{l}^{+} \rangle}{\Delta}, \\ M_{GT3}^{2\nu} &= \sum_{j} \frac{4 \langle \mathbf{0}_{f}^{+} | \sum_{l} \sigma_{l} \tau_{l}^{-} | \mathbf{1}_{j}^{+} \rangle \langle \mathbf{1}_{j}^{+} | \sum_{l} \sigma_{l} \tau_{l}^{-} | \mathbf{0}_{l}^{+} \rangle}{\Delta^{3}}, \\ \Delta &= [E_{j} - (E_{i} + E_{f})/2]/m_{e} \end{split}$$

Electron differential decay rate:

$$\frac{d\Gamma^{\beta\beta}}{dT_{ee}}\sim \frac{dG_0}{dT_{ee}}+\frac{M_{GT}^{2\nu}}{M_{GT-3}^{2\nu}}\frac{dG_2}{dT_{ee}}$$

Exp. sensitivity to $\xi_{31}^{2\nu} = M_{GT-3}^{2\nu}/M_{GT}^{2\nu}$

14 / 25

Electron spectrum in ¹³⁶Xe $\beta\beta$ decay

Present $0\nu\beta\beta$ experiments observe ~10000 $2\nu\beta\beta$ decays, major background

KamLAND-Zen $2\nu\beta\beta$ analysis excludes larger values of $\xi_{31}^{2\nu}$

KamLAND-Zen, PRL122 192501 (2019)

Ratio of leading/subleading $\beta\beta$ matrix elements

Shape of $\beta\beta$ spectrum constrains matrix element ratio $\xi_{31}^{2\nu} = M_{GT-3}^{2\nu}/M_{GT}^{2\nu}$

Theory deficiencies in $M_{GT}^{2\nu}$ fixed adjusting g_A ("queching")

 $\xi_{31}^{2\nu}$ measurement test theoretical models

Theory-experiment work with KamLAND-Zen collaboration Theory: JM, Dvornicky, Šimkovic

Shell model $\xi_{31}^{2\nu}$ predictions consistent with 90% C.L. limit

0.03 KamLAND-Zen et al. PRL122 192501 (2019)

Running of $2\nu\beta\beta$ matrix elements

Measurements of $\beta\beta$ decay spectra can test calculations with different matrix element as function of energy of intermediate state

Qualitative very different shell model vs QRPA

QRPA also quite different between different g_A^{eff} values (or diff. isoscalar pairing g_{pp})

Smaller QRPA g_A^{eff} preferred in some β -decay studies Faessler et al. JPG 35 075104 (2008)

KamLAND-Zen, JM, Dvornicky, Šimkovic, PRL122 192501 (2019)

Single-state dominance in $2\nu\beta\beta$ decays

Recent CUPID-0 measurement of single-state dominance of lowest-lying intermediate ^{82}Br 1⁺ state in $^{82}Se \rightarrow ^{82}Kr + 2\bar{\nu} + 2e$ decay CUPID-0, PRL123 262501 (2019)

Single-state dominance in ⁸²Se $2\nu\beta\beta$ decay confirmed by NEMO-3 Not predicted by any theoretical calculation

Double Gamow-Teller strength distribution

Measurement of Double Gamow-Teller (DGT) resonance in double charge-exchange reactions ⁴⁸Ca(pp,nn)⁴⁸Ti proposed in 80's Auerbach, Muto, Vogel... 1980's, 90's

Recent experimental plans in RCNP, RIKEN (⁴⁸Ca), INFN Catania Takaki et al. JPS Conf. Proc. 6 020038 (2015) Capuzzello et al. EPJA 51 145 (2015), Takahisa, Ejiri et al. arXiv:1703.08264

Promising connection to $\beta\beta$ decay, two-particle-exchange process, especially the (tiny) transition to ground state of final state

Shell model calculation Shimizu, JM, Yako, PRL120 142502 (2018)

19/25

Double Gamow-Teller distribution and pairing

Study the sensitivity of Double GT distribution to pairing correlations

Add/remove pairing $H' = H + G^{JT}P^{JT}$ like-particle (T=1) or proton-neutron (T=0)

Position of the DGT giant resonance very sensitive to like-particle pairing

DGT resonance width probes isoscalar pairing

Shimizu, JM, Yako PRL120 142502 (2018)

20 / 25

Correlation of $0\nu\beta\beta$ decay to DGT transitions

Double GT transition to ground state $M^{DGT} = \langle F_{gs} || [\sum_i \sigma_i \tau_i^- \times \sum_j \sigma_j \tau_j^-]^0 || I_{gs} \rangle|^2$ very good linear correlation with $0\nu\beta\beta$ decay nuclear matrix elements

Double Gamow-Teller correlation with $0\nu\beta\beta$ decay holds across nuclear chart Shimizu, JM, Yako PRL120 142502 (2018)

Common to shell model energy-density functionals interacting boson model, disagreement to QRPA

Experiments at RIKEN, INFN Catania may access DGT transitions

Short-range character of DGT, $0\nu\beta\beta$ decay

Correlation between DGT and $0\nu\beta\beta$ decay matrix elements explained by transition involving low-energy states combined with dominance of short distances between exchanged/decaying neutrons Bogner et al. PRC86 064304 (2012)

 $0\nu\beta\beta$ decay matrix element limited to shorter range

Short-range part dominant in double GT matrix element due to partial cancellation of mid- and long-range parts

Long-range part dominant in QRPA DGT matrix elements

Shimizu, JM, Yako, PRL120 142502 (2018)

Radial density of $2\nu\beta\beta$ in closure (double GT)

Qualitatively different behaviour shell model vs QRPA in $2\nu\beta\beta$ with closure approximation, $\sim \sigma\sigma \tau\tau$ (double GT transitions)

Reduction (QRPA) or not (shell model) as function of E_{ex} of $M^{2\nu}$ translates into qualitatively different radial "density" of matrix element $^{23/25}$

0 uetaeta and $\gamma\gamma$ decays

Explore correlation between $0\nu\beta\beta$ and $\gamma\gamma$ decays, focused on double-M1 transitions

$$\begin{split} \mathcal{M}_{\mathcal{M}1\ \mathcal{M}1}^{\gamma\gamma} &= \\ &\sum_{k} \frac{\langle \mathbf{0}_{f}^{+} | \sum_{n} g_{n}^{\prime} \mathbf{I}_{n} + g_{n}^{s} \boldsymbol{\sigma}_{n} \left| \mathbf{1}_{k}^{+} (\mathsf{IAS}) \rangle \langle \mathbf{1}_{k}^{+} (\mathsf{IAS}) | \sum_{m} g_{m}^{\prime} \mathbf{I}_{m} + g_{m}^{s} \boldsymbol{\sigma}_{m} \left| \mathbf{0}_{i}^{+} (\mathsf{DIAS}) \right\rangle}{E_{k} - (\mathcal{M}_{i} + \mathcal{M}_{f})/2} \end{split}$$

Similar initial and final states both in same nucleus (IAS) in electromagnetic transition

M1 and GT operators very similar when M1 dominated by physics of spin (small effect of orbital part)

Stay tuned!

B. Romeo, JM, C. Peña-Garay, in progress

24 / 25

Summary

Measurements of 2ν ECEC of ¹²⁴Xe and high-statistics electron spetrum of ¹³⁶Xe stringent tests of $\beta\beta$ calculations that inform predictions of $0\nu\beta\beta$ decay

- Shell model can be predictive when correcting deficiencies ("quenching") based on β-decay data
- Electron spectra in 2νββ decay additional test of nuclear calculations
- Double Gamow-Teller transitions 2nd-order electromagnetic transitions (?) potential opportunity to obtain information from 0νββ nuclear matrix elements

Collaborators

Graduate School of Science University of Tokyo

Center for Nuclear Study (CNS)

E. A. Coello Pérez

A. Schwenk

J. Detwiler, I. Shimizu KamLAND-Zen Collaboration

R. Dvornicky, F. Šimkovic

N. Shimizu, K. Yako

C. Peña-Garay, B. Romeo

