Quenching of the Spin-Isospin Response in Nuclei

Peter von Neumann-Cosel

Institute for Nuclear Physics, Technical University Darmstadt

Quenching of the isovector spin M1 resonance

- Quenching of higher magnetic multipoles analog transitions to forbidden β decay
- Neutrino response in ⁴⁰Ar

Supported by DFG under contract SFB 1245

Isovector Spin M1 Resonance

Spinflip M1 Resonance

- Fundamental excitation mode of the nucleus
- Analog of Gamow-Teller resonances with $T = T_0$
- Impact on current problems in nuclear structure and astrophysics
 - neutral-current neutrino interactions in supernovae
 - reaction cross sections in nucleosynthesis network calculations
 - neutrinoless double beta decay
 - tensor interaction and the evolution of shell structure
- Fairly well studied in *sd* and *fp*-shell nuclei
- Little is known in heavy nuclei

Isospin Symmetry

Y. Fujita, B. Rubio, W. Gelletly, Prog. Part. Nucl. Phys. 66, 549 (2011)

Quenching of GT Strength

- Systematic reduction by a factor of about 2
- Impact on weak interactions (g_A renormalized in nuclei?)
- Same behavior for spin-M1?

Systematic Predictions of Electroweak Processes in Nuclei

- Contributions to quenching
 - $-\Delta$ resonance
 - many-body correlations
 - meson-exchange currents
- Ab initio calculations promise systematic treatment of electroweak processes
- Two-body currents differ for axial and vector coupling
 - → measure relevant observables with electromagnetic probes

P. Gysbers et al., Nature Physics 15, 428 (2019)

Comparison M1/GT Operator

$$T(M1)_{iv} = \sqrt{\frac{3}{4\pi}} \sum_{i} [\vec{l}_i \vec{t}_{zi} + (g_s^p - g_s^n) \vec{s}_i \vec{t}_{zi}] \mu_N$$
$$\downarrow$$
$$T(GT_0) = 2\sum_{i} [\vec{s}_i \vec{t}_{zi}]$$

- Spin part dominates because of anomalous magnetic moment
- Isoscalar part weak (but interference)
- Direct measurement of the spin strength with (p,p') reaction

Spin M1 Strength in Heavy Nuclei from Proton Scattering

- C. Djalali et al., NPA 388, 1 (1982)
 - Heavily mixed with E1 strength (Pygmy Dipole Resonance)
 - Problem: Conversion of cross sections to transition strengths

Conversion of Cross Section to Transition Strength

Cross section for GT transitions and B(GT) strength

• For $E_p > 100$ MeV analogous equation for spin-M1 transitions

$$\frac{\mathrm{d}\sigma_{\mathrm{pp}}^{\mathrm{M1}}}{\mathrm{d}\Omega}(0^{\circ}) = \hat{\sigma}_{\mathrm{M1}}F_{\mathrm{M1}}(q,\omega)B(\mathrm{M1}_{\sigma\tau})$$

Isospin symmetry:

$$\hat{\sigma}_{
m M1} \simeq \hat{\sigma}_{
m GT}$$

Application to ²⁰⁸Pb

R.M. Laszewsi et al., PRL 61, 1710 (1988) R. Köhler et al., PRC 35, 1646 (1987)

$$\sum B(M1) = 14.8^{+1.5}_{-1.9} \mu_N^2$$

for E_x ≤ 8 MeV

I. Poltoratska et al., PRC 85, 041304 (2012)

$$\sum B(M1) = 16.0(1.2) \mu_N^2$$

for E_x ≤ 8 MeV

$$\sum B(M1) = 20.5(1.3)\,\mu_N^2$$

for full resonance

J. Birkhan et al., PRC 93, 041302(R) (2016)

Application to ⁴⁸Ca

Quenching of Higher Magnetic Multipoles

Analog Transitions to Forbidden β-Decay

C. Rangacharyulu et al., Phys. Lett. B 135, 29 (1984)

TECHNISCHE

UNIVERSITÄT DARMSTADT

- Study analog transitions with 180° electron scattering
- Cases for M2, M3, M4 in light nuclei

Why 180° scattering?

Inclusive (e,e') cross sections:

180° System at the S-DALINAC

TECHNISCHE UNIVERSITÄT DARMSTADT

Magnetic Transitions in 180° Electron Scattering

Neutrino Response in ⁴⁰Ar

Neutrino Detection in Liquid Ar TPCs

- Neutrino response in ⁴⁰Ar required
- CC reactions: clear signature NC reactions: total v flux

Response DUNE detector

K. Scholberg, ECT* Workshop (2019)

Predictions of NC Response in ⁴⁰Ar

M1 dominates

E1 and M2 relevant at higher energies

H. Đapo and N. Paar, Phys. Rev. C 86, 035804 (2012)

Neutrino Detection in Liquid Ar TPCs

- Neutrino response in ⁴⁰Ar required
- CC reactions: clear signature NC reactions: total v flux
- Combined experimental effort
 - (γ, γ') at HIγS M1
 U. Gayer et al., Phys. Rev. C 100, 034305 (2019)
 - (p, p') at iThemba LABS Spin-M1 E1
 - (e, e') at S-DALINAC M1 M2
 - $(e, e'\gamma)$ at S-DALINAC γ Multiplicity

Response DUNE detector

K. Scholberg, ECT* Workshop (2019)

(e,e'γ) Coincidence Experiments at S-DALINAC

- Proof-of-principle (e,e'γ) experiment at S-DALINAC
 - 3"x3" LaBr:Ce detectors
 - E_e = 30,5 MeV
 - $q = 0,22 \text{ fm}^{-1}$
- Direct γ decay of $1_1^+ \rightarrow g.s.$ in ¹²C observed

G. Steinhilber et al., to be published

Measure γ multiplicity as a function of excitation energy with the ⁴⁰Ar(e,e'γ) reaction

- (p,p') reaction as a new tool to study quenching of the IVSM1 resonance
- Quenching of higher multipoles: investigate transitions analog to forbidden β decay with 180° electron scattering
- Combined effort to measure nuclear response relevant to SN neutrino detection with liquid Ar TPCs

Thank you!

GT Unit Cross Section

GT unit cross section for (p,n) reaction at 297 MeV

M. Sasano et al., Phys. Rev. C 79, 024602 (2009)

M1 Angular Distribution

- DWBA calculation
 - code DWBA07
 - effective proton-nucleus interaction (Love & Franey)
 - QPM wave functions

B(M1) Strength from IAS in ⁴⁸Sc

K. Yako et al, Phys. Rev. Lett. 103, 012503 (2009) $\begin{bmatrix}
4^{8}Ca(p,n)^{48}Sc \\
at 295 MeV
\end{bmatrix}$

IAS

 0.2°

5.1°

9.3°

30

20

10

Excitation energy (MeV)

10

32

0

2

 $d^2\sigma/d\Omega dE ~({
m mb\,sr^{-1}MeV^{-1}})$

⁴⁸Ca: Quenching of IS and IV part

$$B(M1) = \frac{3}{4\pi} |\langle f| |g_{\rm V}^{\rm V} \vec{l} + \frac{g_s^{\rm IS}}{2} \vec{\sigma} - (g_l^{\rm IV} \vec{L} + \frac{g_s^{\rm IV}}{2} \vec{\sigma}) \tau_0 ||i\rangle|^2 \,\mu_{\rm N}^2$$

IV quenching factor is known but IS quenching can be dfifferent.

Two extremes:

- Assume the same quenching factors
- Assume no IS quenching

H. Matsubara et al., PRL 115, 102501 (2015)

Quenching in sd-Shell Nuclei

A. Richter et al., Phys. Rev. Lett. 65, 2519 (1990)P. von Neumann-Cosel et al., Phys. Rev. C 55, 532 (1997)

Quenching in fp-Shell Nuclei

Analog transitions to forbidden beta decay

²⁰F, ³⁶CI: dramatic difference of β decay matrix elements

TECHNISCHE

UNIVERSITÄT DARMSTADT

The Case of ⁴⁸Ca

- 75% of spin M1 strength concentrated in single peak
- Simple structure: almost pure neutron 1f $_{7/2} \rightarrow$ 1f $_{5/2}$ transition
- Reference case for quenching of spin-isospin strength
- (e,e') experiment at DALINAC
 W. Steffen et al., Nucl. Phys. A 404, 413 (1983)
 → B(M1)↑ = (3.9 ± 0.3) µ_N²
 (γ,n) experiment at HIγS)
 J.R. Tompkins et al, Phys. Rev. C 84, 044331 (2011)
 → B(M1)↑ = (6.8 ± 0.5) µ_N²

Spin M1 and B(M1) Strength

B(M1) strength

$$B(M1) = \frac{3}{4\pi} |\langle f||g_l^{IS}\vec{l} + \frac{g_s^{IS}}{2}\vec{\sigma} - (g_l^{IV}\vec{l} + \frac{g_s^{IV}}{2}\vec{\sigma})\tau_0 ||i\rangle|^2 \mu_N^2$$

Spin M1 and B(M1) Strength

B(M1) strength

$$B(\mathrm{M1}) = \frac{3}{4\pi} |\langle f| |g| \overset{\mathrm{S}}{\rightarrow} \vec{l} + \frac{g_{\mathrm{N}}^{\mathrm{IS}}}{2} \vec{\sigma} - (g \overset{\mathrm{IV}}{\rightarrow} \vec{l} + \frac{g_{s}^{\mathrm{IV}}}{2} \vec{\sigma}) \tau_{0} ||i\rangle|^{2} \mu_{\mathrm{N}}^{2}$$
$$B(\mathrm{M1}) \cong \frac{3}{4\pi} \left(g_{s}^{\mathrm{IV}}\right)^{2} B(\mathrm{M1}_{\sigma\tau}) \mu_{\mathrm{N}}^{2}$$