Calculation of the neutrino-nuclear reaction cross-sections for Ge^{76} nuclei and estimation of the solar neutrino background in the *GERDA/LEGEND* experiments

NATIONAL RESEARCH CENTER «KURCHATOV INSTITUTE»

A.N. Fazliakhmetov, G.A. Koroteev Yu.S. Lutostansky, <u>A.K. Vyborov</u>

Motivation for theoretical investigation

GERDA (Phase II) (2018): Exposure: 0.0589 t * yBI: $\sim 2.4^{+1.6}_{-0.8} cnts/(t * yr * ROI)$

LEGEND goal (the second stage): Exposure: 10 t * y BI: 0.1 cnts/(t * yr * ROI)

- Solar neutrino background is not removable
- Main channels: elastic scattering by electrons and capture by Ge⁷⁶ nuclei (with transition to discrete or resonant states of As⁷⁶)
- How much does considering of resonance states increase the total cross section?

The list of background events in MAJORANA experiment (report from 2017)

Nuclear Resonances for ⁷⁶As

(v,e) cross-section

 $\sigma_{total}(E_{\nu}) = \sigma_{discr}(E_{\nu}) + \sigma_{res}(E_{\nu})$

$$\sigma_{discr}(E_{\nu}) = \frac{1}{\pi} \sum_{k} G_{F}^{2} \cos^{2} \theta_{C} p_{e} E_{e} F(Z, E_{e}) [B(F)_{k} + (\frac{g_{A}}{g_{V}})^{2} B(GT)_{k}]$$
$$E_{e} - m_{e} c^{2} = E_{\nu} - Q_{EC} - E > 0]$$

$$\sigma_{res}(E_{\nu}) = \frac{1}{\pi} \int_{\varepsilon_{min}}^{\varepsilon_{max}} G_F^2 \cos^2 \theta_C \, p_e E_e F(Z, E_e) S(E) dE$$

A.K. Vyborov et. Al, Phys. Atom. Nucl. 82 (2019) 5, 477-482

Experimental data and Fitting ⁷⁶Ge(³He,t)⁷⁶As

J. Thies, D. Frekkers et al. Phys. Rev. C. 86. 10.1103/PhysRevC.86.014304

Fitting parameters

$$S_{i}(E) = M_{i}^{2} \cdot \frac{\Gamma_{i}(1 - \exp(-(E/\Gamma_{i})^{2}))}{(E - w_{i})^{2} + \Gamma_{i}^{2}}$$

- shape form for all the resonances. 3 free parameters: the centroid energies, the widths, and the amplitudes.

$$\frac{d^2\sigma}{dEd\Omega} = N_0 \frac{1 - \exp[(E_t - E_0)/T]}{1 + [(E_t - E_{QF})/W^2]}$$

- QFC background shape J. Jänecke et al. Phys. Rev. C 48, 2828 (1993) Only N_0 and E_{QF} are used as free parameters.

Data for the fit is taken from J. Thies, D. Frekkers et al. Phys. Rev. C. 86. 10.1103/PhysRevC.86.014304.

Simultaneous fit for 3 angles: $(0.0^{\circ} - 0.5^{\circ})$, $(0.5^{\circ} - 1.0^{\circ})$ and $(1.0^{\circ} - 1.5^{\circ})$. Same shape parameters, only amplitudes are independent

Normalization and Quenching effect

$$\sum_{i} M_{i}^{2} = \sum_{k} B(GT)_{k} + \int_{\Delta_{min}}^{\Delta_{max}} S(E)dE = 3 \cdot (N - Z) \cdot q_{exp} = 36 \cdot q_{exp}$$

$$\Delta_{min} = 0 \text{ MeV}$$

$$\Delta_{max} = 28 \text{ MeV}$$

$$\Delta_{max} = 28 \text{ MeV}$$

$$\alpha_{min} = 5 \text{ MeV}$$

$$q_{exp}^{min} = 0.55$$

$$R. \text{Madey et al.}$$

$$Phys. Rev. C 40, 540 (1989)$$

$$q_{exp}^{max} = 1$$

Flux density of incident neutrinos (BS05 model)

∧<u>мфти</u>_

Neutrino capture cross-section for ⁷⁶Ge

Solar neutrino capture rate

$$R = \int_0^{E_{max}} \rho_{solar}(E_{\nu}) \sigma_{solar}(E_{\nu}) dE_{\nu} \qquad \qquad E_{max} = 18.79$$

$$R_{total} = R_{discr} + R_{res}$$

Capture rate [SNU]	pep	hep	^{13}N	^{17}F	^{15}O	^{8}B	Total capture rate
R _{discr}	1.369	0.045	0.102	0.021	0.828	13.542	15.9 *
$R_{res}, q_{exp} = 1$	0.0	0.051	0.0	0.0	0.0	7.595	7.645
$R_{GTR}, q_{exp} = 1$	0.0	0.023	0.0	0.0	0.0	3.438	3.461
$R_{res}, q_{exp} = 0.55$	0.0	0.027	0.0	0.0	0.0	4.044	4.071
$R_{GTR}, q_{exp} = 0.55$	0.0	0.012	0.0	0.0	0.0	1.831	1.843
$R_{total}, q_{exp} = 1$	1.369	0.096	0.102	0.021	0.828	21.137	23.552 **
$R_{total}, q_{exp} = 0.55$	1.369	0.072	0.102	0.021	0.828	17.586	19.977 **
4 CNU 40-36	1						

 $1 SNU = 10^{-36} \frac{1}{nucleus \cdot s}$

* H. Ejiri and S. Elliott, Phys. Rev. C 89, 055501 (2014)

** A.K. Vyborov et. al Phys. Atom. Nucl. 82 (2019) 5, 477-482

Geometry of the setup

GERDA Phase II:

7 strings of sensitive Ge⁷⁶ detectors:

- 30 enriched (86%) thick window BEGe (20 kg) Resolution at $Q_{\beta\beta}$: 3.0±0.2 keV
- 7 enriched (86%) semi-coax (15.8 kg) Resolution at Q_{ββ}: 4.0±0.2 keV
- 3 natural semi-coax (7.6 kg)

Real strings of Ge detectors in GERDA experiment

Rendering

Simulation of beta decay within a single detector

BEGe detectors:

- Yellow lines: trajectories of gamma quantums
- Red lines: trajectories of primary and secondary electrons

All results were done

without PSD!

coaxial detectors:

NB:

Initial assessment of neutrino BI

⁷⁶Ge(v,e⁻)⁷⁶As single Coax / BEGe [blue/red] cnt/t*yr*ROI 0.008 0.007 Ъ, 0.006 0.005 0.004 0.003 0.002 ROI = 4 keV0.001 3000 E,keV 1000 500 1500 2000 2500 $Bi_{eff} = 0.0045 \text{ cnts}/(t*yr*ROI)$ CR = 19.977 SNU: $Bi_{eff} = 0.0053 \text{ cnts}/(t^*yr^*ROI)$] [CR = 23.552 SNU: BI = 0.0011 cnts/(t*yr*ROI)(A. Klimenko, NUCLEUS-2004) + elastic scattering on e⁻: **LEGEND goal** (the second stage): 0.1 cnts/(t*yr*ROI)

SUMMARY

- Transitions into high-lying resonant GT states increase the total neutrino capture cross-section by **25%** or **50%**.
 - The neutrino component of the background remains minor in GERDA/LEGEND experiment.

 The obtained background value can be improved by taking into account neutrino oscillations and the method of pulse shape discrimination.

Thank you for your attention!

Nuclear Resonances (general view)

GTR predictions

Yu. V. Gaponov, Yu. S. Lyutostanskii, *JETP Lett.* 15, 120 (1972).

PR calculations

Yu. S. Lutostansky *JETP Lett.* 106, 7 (2017)

