Conveners
Invited Talks
- Chair: Francesco Cappuzzello (University of Catania and INFN-LNS, Italy)
Invited Talks
- Chair: Elena Aprile (Columbia University)
Invited Talks
- Chair: Federico Nova (Rutherford Appleton Laboratory)
Invited Talks
- Chair: Kai Zuber (Technical University Dresden)
Invited Talks
- Chair: Karlheinz Langanke (GSI Darmstadt)
Invited Talks
- Chair: Clarence Virtue (Laurentian University / SNOLAB)
Invited Talks
- Chair: Christian Enss (Heidelberg University)
Invited Talks
- Chair: Horst Lenske (U. Giessen)
Invited Talks
- Chair: Manfred Lindner (Max-Planck-Institut für Kernphysik)
Invited Talks
- Chair: Jouni Suhonen (University of Jyväskylä)
Invited Talks
- Chair: Francesca Gulminelli (LPC Caen and University of Caen, France)
Invited Talks
- Chair: Takaharu Otsuka (Department of Physics, University of Tokyo)
The lepton sector of the Standard Model is a very important and interesting field to search for new physics beyond the standard model. As we know that quarks and neutrinos are mixing it is an open question why the charged leptons are now. This stimulates the search for charge lepton violation (CLFV). In addition, neutrino-less double beta decay would violate total lepton number by 2 and prove...
The axial-type of weak couplings seem to be renormalized in medium-heavy and heavy nuclei as suggested by analyses of nuclear beta and double beta decays, nuclear muon capture, charge-exchange reactions and low-energy neutrino-nucleus scattering [1]. Also some calculations suggest that also the vector-type of couplings could attain effective values in nuclei [2,3]. The possible variation of...
Neutrinos play an important role for the supernova dynamics and the
associated nucleosynthesis. During collapse, electron neutrinos, produced
by electron capture on nuclei, dominate, while all neutrino families are
being produced during the cooling phase of the protoneutron star.
Neutrinos are crucial for the explosive nucleosynthesis. At first, by
interaction with free nucleons...
The Cryogenic Underground Observatory for Rare Events (CUORE) is the first bolometric experiment searching for neutrinoless double-beta decay (0νββ) that has been able to reach the one-ton scale. The detector, located at the Laboratori Nazionali del Gran Sasso in Italy, consists of an array of 988 TeO$_{2}$ crystals arranged in a compact cylindrical structure of 19 towers. The construction of...
The SuperNEMO Experiment is designed to search for neutrinoless double beta decays of the Se-82 isotope. The detector employs the multi-observable tracking-and-calorimetry technique pioneered by the NEMO-3 Experiment. Electrons originating from double beta decays of an isotope in thin isotopic foils are tracked in wire tracking chambers and their energy is measured by large scintillator...
The search for neutrinoless double-beta decay represents one of the most exciting
opportunities to explore physics beyond the Standard Model. The knowledge that
neutrinos are massive particles, yet, with masses that are many orders of magnitude
smaller than those of charged fermions, provides encouragement to further push
the sensitivity of these experiments.
nEXO is a 5-tonne...
The MAJORANA collaboration is searching for neutrinoless double-beta ($0\nu\beta\beta$) decay in $^{76}$Ge using modular arrays of enriched, high-purity Ge detectors. The MAJORANA DEMONSTRATOR consists of an array of 44 kg of high-purity Ge detectors with a p-type point contact geometry currently operating in the Sanford Underground Research Facility in Lead, South Dakota. The ultra-low...
The impact of different microphysics inputs on the dynamics of core collapse
during infall and early post-bounce is studied performing spherically symmetric simulations in general relativity using a multigroup scheme for neutrino transport and full nuclear distributions in extended nuclear statistical equilibrium models.
We show that the individual EC rates are the most important source of...
HALO-1kT is a lead-based supernova neutrino detector proposed for the Laboratori Nazionali del Gran Sasso (LNGS). By utilizing lead from the decommissioning of the OPERA detector at LNGS, HALO-1kT will improve of the sensitivity of the Helium and Lead Observatory (HALO), that has been running in SNOLAB in Canada for the past 7 years, by a factor of ~25. The lead-based neutrino detection...
The detection of the neutrino and subsequently the solar neutrino had stood for over 25 years as a major challenge for nuclear physicists. The presentation is a narrative of the ground-breaking experiment of the joint South African and American teams of JPF Sellschop and F. Reines for the search of cosmic ray neutrino in the early sixties. The Case Western-Wits team operated a gigantic for...
Since the discovery of neutrino oscillation we know that neutrinos have non-zero masses, but we still do not know the absolute neutrino mass scale, which is as important for cosmology as for particle physics. The direct search for a non-zero neutrino mass from endpoint spectra of weak decays is complementary to the search for neutrinoless double beta-decay and analyses of cosmological...
Rapidly developing neutrino physics has found in Penning-trap mass spectrometry a staunch ally in investigating and contributing to a variety of fundamental problems. The most familiar are the absolute neutrino mass and the possible existence of resonant neutrinoless double-electron capture / double-beta dacay and of keV-sterile neutrinos. This review provides an overview on the latest...
The goal of the Electron Capture in $^{163}$Ho (ECHo) experiment is the determination of the electron neutrino mass by the analysis of the electron capture spectrum of $^{163}$Ho. The detector technology is based on metallic magnetic calorimeters operated at a temperature of about 10 mK in a reduced background environment. For the first phase of the experiment, ECHo-1k, the detector production...
I will survey the progress towards the SKA radio telescope array, including the successful building and operation of South Africa's MeerKAT array. Then I will focus on how these instruments can deliver new measurements and insights about the Dark Energy that is driving the accelerated expansion of the Universe.
What is the Dark Matter which makes 85% of the matter in the Universe? We have been asking this question for many decades and used a variety of experimental approaches to address it, with detectors on Earth and in space. Yet, the nature of Dark Matter remains a mystery. An answer to this fundamental question will likely come from ongoing and future searches with accelerators, indirect...
Abstract: The new results obtained by the first 6 independent annual cycles of DAMA/LIBRA–phase2 experiment deep underground at Gran Sasso are presented; they correspond to a total exposure of 1.13 ton × yr. The improved experimental configuration with respect to the phase1 allowed a lower energy threshold. The DAMA/LIBRA–phase2 data confirm the evidence of a signal that meets all the...
The COSINE experiment searches for interactions of Weakly Interacting Massive Particles (WIMPs) using an array of NaI(Tl) crystal detectors in the 700-m-deep Yangyang underground laboratory, Korea. The main goal is to check the annual modulation signal observed by DAMA/LIBRA with the same target material. The first phase of the experiment, COSINE-100 with 106 kg of NaI(Tl) crystals, has been...
The knowledge of initial flux, energy and flavor of current neutrino beams is currently the main limitation for a precise measurement of neutrino cross sections. The ENUBET ERC project (2016-2021) is studying a facility based on a narrow band neutrino beam capable of constraining the neutrino fluxes normalization through the monitoring of the associated charged leptons in an instrumented decay...
In this talk I will present a potentially game-changing new particle detector technology called LiquidO. This idea turns the concept behind the widespread scintillator detectors on its head: for 50 years research has focussed on making more and more transparent scintillator materials, whereas LiquidO actually requires an opaque scintillator. In LiquidO, scintillation light is confined near its...
The big-bang universe, supernovae (SNe), collapsars and binary neutron-star mergers (NSMs) are the viable celestial sources of “multi-messengers”. These messengers are neutrinos for weak force, gravitational waves for gravity, photons for electromagnetism, and atomic nuclei for strong nuclear force [1]. Their detection takes the keys to solve still unanswered questions such as mass hierarchy...
It has been almost a decade since the reactor antineutrino anomaly entered the stage, where the number of experimentally detected antineutrinos emerging from a nuclear power reactor interior was signi?cantly less than theoretically predicted from nuclear ? decay. This has, in turn, motivated the search for an eV-scale sterile neutrino in several very short baseline experiments, none of which...
Coherent elastic neutrino nucleus scattering (CEvNS) was first observed 2018 with neutrinos from pion decay at rest. CONUS aims at detecting CEvNS with low energy anti-neutrinos. It uses novel Germanium detector technology and a virtual depth shield for operation at shallow depth only 17 meters away from the core of a multi GW power reactor. The talk will cover the status of CONUS, latest...
CEvNS process has been predicted in 1974 right after discovery of the neutral current of the week interactions. It took more than 40 years to confirm this prediction experimentally. In 2017 COHERENT collaboration reported of the first observation of CEvNS using 14 kg CsI detector and SNS neutrino source at the ORNL. In my talk I will review first observation of CEvNS and present experimental...
: A Quark Condensate See-Saw (QCSS) mechanism of generation of Majorana neutrino mass due to spontaneous breaking of chiral symmetry accompanied with the formation of a quark condensate is presented. Consequencies of this scenario of neutrino mass generation for the neutrinoless double beta decay ($0\nu\beta\beta$-decay), tritium beta decay and cosmological measurements are drawn. The...
The neutrinoless double beta decay is of special importance in determining the fundamental properties of neutrinos. The nuclear matrix element of this decay must be evaluated in a sufficient accuracy, and the shell-model calculation can make contributions to this end. This is because the shell-model calculations incorporate basically all correlations into the wave functions of the initial and...
Long considered a phenomenological field, breakthroughs in many-body methods together with our treatment of nuclear and electroweak forces are rapidly transforming modern nuclear theory into a true first- principles, or ab initio, discipline. In this talk I will discuss recent advances, which expand the scope of ab initio theory to global calculations of nuclei, potentially as heavy as 208Pb,...
I discuss recent work to calculate the nuclear matrix elements that govern neutrinoless double beta decay in an ab-initio way, that is, without the adjustment of parameters except those in chiral effective field theory. A method based on the use of techniques from energy-density functional theory in combination with ab-initio Hamiltonians has proved particularly powerful. I describe its...
The Deep Underground Neutrino Experiment (DUNE) is one of the most ambitious particle physics experiments of the next generation. DUNE consists of two detectors: the Near Detector (ND) - just downstream of the neutrino beam at FERMILAB (IL - USA), and the Far Detector (FD) - 1300 km away and 1500 m deep in the underground SURF laboratory (SD - USA). The ND is a multi-technology apparatus...
Current status of the T2K long-baseline neutrino-oscillation experiment is presented.
Future upgrades and prospects in coming ten years are also reported.
The current status of the mass-mixing parameters in the three-neutrino framework will be reviewed. The increasing connections between neutrino and nuclear physics will be highlighted. A case will be made for establishing an interdisciplinary field, that might be named as "electroweak nuclear physics".
In this talk I shall present results from recent high-precision half-life and branching ratio measurements for 19Ne beta decay and the detailed spectroscopic analyses of states in 136Ba and 136Cs via two-nucleon transfer reactions. I will briefly discuss the connection between these experiments in the context of Standard Model tests, highlighting the importance of reconciling the experimental...
Researches on neutrinoless double beta decay have crucial implications on particle physics, cosmology and fundamental physics. It is likely the most promising process to access the absolute neutrino mass scale. To determine quantitative information from the possible measurement of the 0νββ decay half-lives, the knowledge of the Nuclear Matrix Elements (NME) involved in such transitions is...
The status and prospects of heavy ion charge exchange reactions are discussed. Their important role for nuclear reaction, nuclear structure, and beta-decay investigations is emphasized. Dealing with peripheral reactions, direct reaction theory gives at hand the proper methods for single (SCE) and double charge exchange (DCE) ion–ion scattering. The microscopic descriptions of charge exchange...
The AMoRE (Advanced Mo-based Rare process Experiment) intends to find an evidence for neutrinoless double beta decay of Mo-100 by using a cryogenic technique with molybdate based crystal scintillators. The crystals, which are cooled down to 10~20 mK temperatures, are equipped with MMC-type phonon and photon sensors to detect both thermal and scintillation signals produced by a particle...
In this talk, I will present the status of solar models, review the main limitations imposed by uncertain input physics in the models and by external constraints (aka solar abudances), and discuss the current constraints imposed from helioseismic and solar neutrino measurements. Also, I will discuss the implications that our current limitations in modeling the Sun have for stellar physics....
A future neutrino experiment based in Japan, Hyper-Kamiokande (HK) consists of a high-intensity neutrino beam from the J-PARC accelerator targeting a Near Detector suite, an Intermediate Water Cerenkov detector and an underground world-largest Water Cerenkov Far Detector, providing 0.19 Mt (fiducial mass) of ultra-pure water sensed by newly developed photo-sensors with 40%-equivalent...
The Borexino liquid scintillator neutrino observatory is devoted to perform high-precision neutrino observations: the study of solar neutrinos is the primary goal of the experiment. The exceptional radiopurity together with the good energy resolution (5% at 1 MeV) put Borexino in the unique situation of being able to validate the MSW-LMA oscillation paradigm across the full solar energy range....
Quenching of the Gamow-Teller strength in in weak processes is a well-established phenomenon. I will briefly review our knowledge of quenching of the isospin-analog spin-M1 resonance. The interest is driven by recent developments of ab initio calculations based on interactions derived from χEFT, which allow a unified description of electromagnetic and weak processes populating isospin-analog...
Neutrinoless double-beta decay (0nbb) is notoriously difficult to observe. Moreover, expected decay rates depend on the value of the nuclear matrix elements (NMEs) which are poorly known. In order to obtain insights on the NMEs, and therefore on expected decay rates, one can study other processes connected to 0nbb decay. In this talk I confront predictions and measurements of the half-life and...
To describe the double beta decay processes reliably one needs a possibility to test the involved virtual transitions against experimental data. In this work we manifest how to utilise
the nuclear and lepton ($\mu$) charge-excange reaction data in the study of $0\nu\beta\beta$ decay and astro-neutrinos. In my contribution I will cover the theoretical aspects of ordinary muon capture (OMC) as...
S. Stoica,
International Centre for Advanced Training and Research in Physics and
Horia Hulubei National Institute of Physics and Nuclear Engineering,
P.O. Box MG12, 077125 Bucharest-Magurele, Romania
Until the recent past not to much importance was given to the kinematic factors related to the double-beta decay, i.e. the phase space factors, electronic spectra and angular correlations...